

asq

asq is a Python package for specifying and performing efficient queries
over collections of Python objects using a fluent interface. It is licensed
under the MIT License

Contents

Front Matter

	Copyright

	Official Website

	License

Narrative Documentation

Read this to learn how to use asq.

	asq Introduction

	Installing asq

	Diving in
	Initiators

	When is the query evaluated?

	Query chaining

	Query nesting

	Selectors
	Lambdas

	Functions

	Unbound methods

	Bound methods

	Selector factories

	Default selectors and the identity selector

	Predicates
	Lambdas

	Functions

	Unbound methods

	Bound methods

	Predicate factories

	Predicate combinator factories

	Using selector factories for predicates

	Comparers

	Records

	Debugging

	Extending asq

Reference Documentation

Descriptions and examples for every public function, class and method in
asq.

	API Reference
	asq
	asq.initiators

	asq.queryables
	asq.queryables.Queryable

	asq.queryables.OrderedQueryable

	asq.queryables.Lookup

	asq.queryables.Grouping

	asq.selectors
	Selectors

	Selector factories

	asq.predicates
	Predicate factories

	Predicate combinators

	asq.record
	asq.record.Record

	asq.record.new

	asq.namedelements
	asq.namedelements.IndexedElement

	asq.namedelements.KeyedElement

	asq.extension

	Differences from LINQ
	Embedded Domain Specific Language

	let bindings

	Extension methods

	Overloading

	Equality comparers

	Style changes

	Specific naming changes

	Selector and predicate factories

	Execution engine

	Pythonic behaviour
	Container creation

	Special methods

	Frequently Asked Questions
	Where are map(), filter() and reduce()?

	Where are fold(), foldl() and foldr()?

	Wouldn’t generators be a better name for what asq calls initiators?

	How do I pronounce asq?

	Where does the name asq come from?

Detailed Change History

	Changes
	asq v.next

	asq 1.3

	asq 1.2.1

	asq 1.2

	asq 1.1

	asq 1.0

Samples

More complex examples of non-trivial usage of asq:

	Samples
	Mandelbrot

Indices and tables

	Index

	Module Index

	Search Page

Copyright

asq

Copyright © 2010-2015 Sixty North

Official Website

https://github.com/rob-smallshire/asq

License

Copyright (c) 2011-2016 Sixty North AS

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

asq Introduction

asq implements a chained declarative style queries for Python iterables.
This provides an alternative to traditional for loops or comprehensions
which are ubiquitious in Python. Query methods can offer the following
advantages over loops or comprehensions:

	Concision: asq query expressions can be to the point, especially
when combining multiple queries.

	Readability: Chained asq query operators can have superior
readability to nested or chained comprehensions. For example, multi-key
sorting is much clearer with asq than with other approaches.

	Abstraction: Query expressions in asq decouple query specification
from the execution mechanism giving more flexibility with how query results
are determined, so for example queries can be executed in parallel with
minimal changes.

More complex queries tend to show greater benefits when using asq. Simple
transformations are probably best left as regular Python comprehensions. It’s
easy to mix and match asq with comprehensions and indeed any other Python
function which produces or consumes iterables.

Installing asq

asq is available on the Python Package Index [http://pypi.python.org/pypi/asq/] (PyPI) and can be installed with
pip:

$ pip install asq

Alternatively, you can download and unpack the source distribution from the
asq `downloads page`_ or PyPI. You should then unpack the source
distribution into a temporary directory and run the setup script which will
install asq into the current Python environment, for example:

$ tar xzf asq-1.0.tar.gz
$ cd asq-1.0
$ python setup.py install

If you are using Python 2.6 you will also need to install the back-ported
ordereddict [http://pypi.python.org/pypi/ordereddict] module which was introduced in Python 2.7.

Diving in

A few simple examples will help to illustrate use of asq. We’ll need some
data to work with, so let’s set up a simple list of student records, where each
student is represented by a dictionary:

students = [dict(firstname='Joe', lastname='Blogs', scores=[56, 23, 21, 89]),
 dict(firstname='John', lastname='Doe', scores=[34, 12, 92, 93]),
 dict(firstname='Jane', lastname='Doe', scores=[33, 94, 91, 13]),
 dict(firstname='Ola', lastname='Nordmann', scores=[98, 23, 98, 87]),
 dict(firstname='Kari', lastname='Nordmann', scores=[86, 37, 88, 87]),
 dict(firstname='Mario', lastname='Rossi', scores=[37, 95, 45, 18])]

To avoid having to type in this data structure, you can navigate to the root of
the unpacked source distribution of asq and then import it from pupils.py
in the examples directory with:

$ cd asq/examples/
$ python
Python 2.6.2 (r262:71605, Apr 14 2009, 22:40:02) [MSC v.1500 32 bit (Intel)] on
win32
Type "help", "copyright", "credits" or "license" for more information.
>>> from pupils import students

Now we can import the query tools we need. We’ll start with the most commonly
used import from asq which is the query initiator:

>>> from asq import query

The query initiator allows us to perform queries over any Python iterable,
such as the students object we imported.

Let’s start by creating a simple query to find those students who’s first names
begin with a letter ‘J’:

>>> query(students).where(lambda student: student['firstname'].startswith('J'))
Queryable(<filter object at 0x00000000031D9B70>)

To dissect this line and its result left to right, we have:

	A call to the query(students). Here query() is a query initiator
- a factory function for creating a Queryable object from, in this case,
an iterable. The query() function is the key entry point into the
query system (although there are others).

	A method call to where(). Where is one of the asq query operators
and is in fact a method on the Queryable returned by the preceding call to
query(). The where() query operator accepts a single argument, which
is a callable predicate (i.e. returning either True or False) function
which which each element will be tested.

	The predicate passed to where() is defined by the expression lambda
student: student['firstname'].startswith('J') which accepts a single
argument student which is the element being tested. From the
student dictionary the first name is extracted and the built-in string
method startswith() is called on the name.

	The result of the call is a Queryable object. Note that no results have
yet been produced - because the query has not yet been executed. The
Queryable object contains all the information required to execute the
query when results are required.

Initiators

All query expressions begin with query initiator. Initiators are the entry
points to asq and are to be found the in the initiators submodule. The
most commonly used query initiator is also availble from the top-level
asq namespace for convenience. All initiators return Queryables on which
any query method can be called. We have already seen the query() initiator
in use. The full list of available query initiators is:

	Initiator
	Purpose

	query(iterable)
	Make a Queryable from any iterable

	integers(start, count)
	Make a Queryable sequence of consecutive integers

	repeat(value, count)
	Make a Queryable from a repeating value

	empty()
	Make a Queryable from an empty sequence

When is the query evaluated?

In order to make the query execute we need to iterate over the Queryable or
chain additional calls to convert the result to, for example, a list. We’ll
do this by creating the query again, but this time assigning it to a name:

>>> q = query(students).where(lambda student: student['firstname'].startswith('J'))
>>> q
Queryable(<filter object at 0x00000000031D9BE0>)
>>> q.to_list()
[{'lastname': 'Blogs', 'firstname': 'Joe', 'scores': [56, 23, 21, 89]},
 {'lastname': 'Doe', 'firstname': 'John', 'scores': [34, 12, 92, 93]},
 {'lastname': 'Doe', 'firstname': 'Jane', 'scores': [33, 94, 91, 13]}]

Most of the asq query operators like where() use so-called deferred
execution whereas others which return non-Queryable results use immediate
execution and force evaluation of any pending deferred operations.

Queries are executed when the results are realised by converting them to a
concrete type such as a list, dictionary or set, or by any of the query
operators which return a single value.

Query chaining

Most of the query operators can be composed in chains to create more complex
queries. For example, we could extract and compose the full names of the
three students resulting from the previous query with:

>>> query(students).where(lambda s: s['firstname'].startswith('J')) \
... .select(lambda s: s['firstname'] + ' ' + s['lastname']) \
... .to_list()
['Joe Blogs', 'John Doe', 'Jane Doe']

Note

The backslashes above are Python’s line-continuation character, used here
for readability. They are not part of the syntax of the expression.

If we would like our results sorted by the students’ minimum scores we can use
the Python built-in function min() with the order_by query operator:

>>> query(students).where(lambda s: s['firstname'].startswith('J')) \
... .order_by(lambda s: min(s['scores'])) \
... .select(lambda s: s['firstname'] + ' ' + s['lastname']) \
... .to_list()
['John Doe', 'Jane Doe', 'Joe Blogs']

Query nesting

There is nothing to stop us initiating a sub-query in the course of defining a
primary query. For example, to order the students by their average score we
can invoke the query() initiator a second time and chain the average()
query operator to determine the mean score to pass to order_by():

>>> query(students).order_by(lambda s: query(s['scores']).average()) \
... .where(lambda student: student['firstname'].startswith('J')) \
... .select(lambda s: s['firstname'] + ' ' + s['lastname']) \
... .to_list()
['Joe Blogs', 'John Doe', 'Jane Doe']

Selectors

Many of the query operators, such as select(), order_by or where()
accept selector callables for one or more of their arguments. Typically such
selectors are used to select or extract a value from an element of the
query sequence. Selectors can be any Python callable and examples of commonly
used selectors are demonstrated below. In addition, asq provides some
selector factories as a convenience for generating commonly used forms of
selectors.

Most of the selectors used in asq are unary functions, that is, they take
a single positional argument which is the value of the current element.
However, some of the query operators do require selectors which take two
arguments; these cases are noted in the API documentation.

Lambdas

Lambda is probably the most frequently used mechanism for specifying selectors.
This example squares each element:

>>> numbers = [1, 67, 34, 23, 56, 34, 45]
>>> query(numbers).select(lambda x: x**2).to_list()
[1, 4489, 1156, 529, 3136, 1156, 2025]

Functions

Sometime the selector you want cannot be easily expressed as a lambda, or it is
already available as a function in existing code, such as the standard library.

In this example we use the built-in len() function as the selector:

>>> words = 'The quick brown fox jumped over the lazy dog'.split()
>>> words
['The', 'quick', 'brown', 'fox', 'jumped', 'over', 'the', 'lazy', 'dog']
>>> query(words).select(len).to_list()
[3, 5, 5, 3, 6, 4, 3, 4, 3]

Unbound methods

Unbound methods are obtained by referencing the method of a class rather than
the method of an instance. That is, the self parameter passed as the first
argument of a method has not yet been specified. We can pass any unbound
method which takes only a single argument including the normally implicit
self as a selector.

In this example, we use an unbound method upper() of the built-in string
class:

>>> words = ["the", "quick", "brown", "fox"]
>>> query(words).select(str.upper).to_list()
['THE', 'QUICK', 'BROWN', 'FOX']

This has the effect of making the method call on each element in the
sequence.

Bound methods

Bound methods are obtained by referencing the method of an instance rather
than the method of a class. That is, the instance referred to by the self
parameter passed as the first argument of a method has already been determined.

To illustrate, here we create a Multiplier class instances of which multiply by
a factor specified at initialization when the multiply method is called:

>>> numbers = [1, 67, 34, 23, 56, 34, 45]
>>>
>>> class Multiplier(object):
... def __init__(self, factor):
... self.factor = factor
... def multiply(self, value):
... return self.factor * value
...
>>> five_multiplier = Multiplier(5)
>>> times_by_five = five_multiplier.multiply
>>> times_by_five
<bound method Multiplier.multiply of <__main__.Multiplier object at 0x0000000002F251D0>>
>>>
>>> query(numbers).select(times_by_five).to_list()
[5, 335, 170, 115, 280, 170, 225]

This has the effect of passing each element of the sequence in turn as an
argument to the bound method.

Selector factories

Some selector patterns crop up very frequently and so asq provides some
simple and concise selector factories for these cases. Selector factories are
themselves functions which return the actual selector function which can be
passed in turn to the query operator.

	Selector factory
	Created selector function

	k_(key)
	lambda x: x[key]

	a_(name)
	lambda x: getattr(x, name)

	m_(name, *args, **kwargs)
	lambda x: getattr(x, name)(*args, **kwargs)

Key selector factory

For our example, we’ll create a list of employees, with each employee being
represented as a Python dictionary:

>>> employees = [dict(firstname='Joe', lastname='Bloggs', grade=3),
... dict(firstname='Ola', lastname='Nordmann', grade=3),
... dict(firstname='Kari', lastname='Nordmann', grade=2),
... dict(firstname='Jane', lastname='Doe', grade=4),
... dict(firstname='John', lastname='Doe', grade=3)]

Let’s start by looking at an example without selector factories. Our query will
be to order the employees by descending grade, then by ascending last name and
finally by ascending first name:

>>> query(employees).order_by_descending(lambda employee: employee['grade']) \
... .then_by(lambda employee: employee['lastname']) \
... .then_by(lambda employee: employee['firstname']).to_list()
[{'grade': 4, 'lastname': 'Doe', 'firstname': 'Jane'},
 {'grade': 3, 'lastname': 'Bloggs', 'firstname': 'Joe'},
 {'grade': 3, 'lastname': 'Doe', 'firstname': 'John'},
 {'grade': 3, 'lastname': 'Nordmann', 'firstname': 'Ola'},
 {'grade': 2, 'lastname': 'Nordmann', 'firstname': 'Kari'}]

Those lambda expressions can be a bit of a mouthful, especially given Python’s
less-than-concise lambda syntax. We can improve by using less descriptive
names for the lambda arguments:

>>> query(employees).order_by_descending(lambda e: e['grade']) \
... .then_by(lambda e: e['lastname']) \
... .then_by(lambda e: e['firstname']).to_list()
[{'grade': 4, 'lastname': 'Doe', 'firstname': 'Jane'},
 {'grade': 3, 'lastname': 'Bloggs', 'firstname': 'Joe'},
 {'grade': 3, 'lastname': 'Doe', 'firstname': 'John'},
 {'grade': 3, 'lastname': 'Nordmann', 'firstname': 'Ola'},
 {'grade': 2, 'lastname': 'Nordmann', 'firstname': 'Kari'}]

but there’s still quite a lot of syntactic noise in here. By using one of the
selector factories provided by asq we can make this example more concise.
The particular selector factory we are going to use is called k_() where the
k is a mnemonic for ‘key’ and the underscore is there purely to make the name
more unusual to avoid consuming a useful single letter variable name from the
importing namespace. k_() takes a single argument which is the name of the
key to be used when indexing into the element, so the expressions:

k_('foo')

and:

lambda x: x['foo']

are equivalent because in fact the first expression is in fact returning the
second one. Let’s see k_() in action reducing the verbosity and apparent
complexity of the query somewhat:

>>> from asq import k_
>>> query(employees).order_by_descending(k_('grade')) \
... .then_by(k_('lastname')) \
... .then_by(k_('firstname')).to_list()
[{'grade': 4, 'lastname': 'Doe', 'firstname': 'Jane'},
 {'grade': 3, 'lastname': 'Bloggs', 'firstname': 'Joe'},
 {'grade': 3, 'lastname': 'Doe', 'firstname': 'John'},
 {'grade': 3, 'lastname': 'Nordmann', 'firstname': 'Ola'},
 {'grade': 2, 'lastname': 'Nordmann', 'firstname': 'Kari'}]

It might not be immediately obvious from it’s name, but k_() works with
any object supporting indexing with square brackets, so it can also be used
with an integer ‘key’ for retrieved results from sequences such as lists and
tuples.

Attribute selector factory

The attribute selector factory provided by asq is called a_() and it
creates a selector which retrieves a named attribute from each element. To
illustrate its utility, we’ll re-run the key selector exercise using the
attribute selector against Employee objects rather than dictionaries.
First of all, our Employee class:

>>> class Employee(object):
... def __init__(self, firstname, lastname, grade):
... self.firstname = firstname
... self.lastname = lastname
... self.grade = grade
... def __repr__(self):
... return ("Employee(" + repr(self.firstname) + ", "
... + repr(self.lastname) + ", "
... + repr(self.grade) + ")")

Now the query and its result use the lambda form for the selectors:

>>> query(employees).order_by_descending(lambda employee: employee.grade) \
... .then_by(lambda employee: employee.lastname) \
... .then_by(lambda employee: employee.firstname).to_list()
[Employee('Jane', 'Doe', 4), Employee('Joe', 'Bloggs', 3),
 Employee('John', 'Doe', 3), Employee('Ola', 'Nordmann', 3),
 Employee('Kari', 'Nordmann', 2)]

We can make this query more concise by creating our selectors using the a_
selector factory, where the a is a mnemonic for ‘attribute’. a_() accepts
a single argument which is the name of the attribute to get from each element.
The expression:

a_('foo')

is equivalent to:

lambda x: x.foo

Using this construct we can shorted our query to the more concise:

>>> query(employees).order_by_descending(a_('grade')) \
... .then_by(a_('lastname')) \
... .then_by(a_('firstname')).to_list()
[Employee('Jane', 'Doe', 4), Employee('Joe', 'Bloggs', 3),
 Employee('John', 'Doe', 3), Employee('Ola', 'Nordmann', 3),
 Employee('Kari', 'Nordmann', 2)]

Method selector factory

The method-call selector factory provided by asq is called m_() and it
creates a selector which makes a method call on each element, optionally
passing positional or named arguments to the method. We’ll re-run the attribute
selector exercise using the method selector against a modified Employee
class which incorporates a couple of methods:

>>> class Employee(object):
... def __init__(self, firstname, lastname, grade):
... self.firstname = firstname
... self.lastname = lastname
... self.grade = grade
... def __repr__(self):
... return ("Employee(" + repr(self.firstname)
... + repr(self.lastname)
... + repr(self.grade) + ")")
... def full_name(self):
... return self.firstname + " " + self.lastname
... def award_bonus(self, base_amount):
... return self.grade * base_amount

In its simplest form, the m_() selector factory takes a single argument,
which is the name of the method to be called as a string. So:

m_('foo')

is equivalent to:

lambda x: x.foo()

We can use this to easy generate a list of full names for our employees:

>>> query(employees).select(m_('full_name')).to_list()
['Joe Bloggs', 'Ola Nordmann', 'Kari Nordmann', 'Jane Doe', 'John Doe']

The m_() selector factory also accepts arbitrary number of additional
positional or named arguments which will be forwarded to the method when it is
called on each element. So:

m_('foo', 42)

is equivalent to:

lambda x: x.foo(42)

For example to determine total cost of awarding bonuses to our employees on the
basis of grade, we can do:

>>> query(employees).select(m_('award_bonus', 1000)).to_list()
[3000, 3000, 2000, 4000, 3000]

Default selectors and the identity selector

Any of the selector arguments to query operators in asq may be omitted [1]
to allow the use of operators to be simplified. When a selector is omitted
the default is used and the documentation makes it clear how that default
behaves. In most cases, the default selector is the identity() selector.
The identity selector is very simple and is equivalent to:

def identity(x):
 return x

	[1]	Except the single selector argument to the select() operator itself.

That is, it is a function that returns it’s only argument - essentially it’s a
do-nothing function. This is useful because frequently we don’t want to select
an attribute or key from an element - we want to use the element value
directly. For example, to sort a list of words alphabetically, we can omit the
selector passed to order_by() allowing if to default to the identity
selector:

>>> words = "the quick brown fox jumped over the lazy dog".split()
>>> query(words).order_by().to_list()
['brown', 'dog', 'fox', 'jumped', 'lazy', 'over', 'quick', 'the', 'the']

Some query operators, notably select() perform important optimisations when
used with the identity operator. For example the operator select(identity)
does nothing and simply returns the Queryable on which it was invoked.

Predicates

Many of the query operators, such as where(), distinct(), skip(),
accept predicates. Predicates are functions which return True or
False. As with selectors (see above) predicates can be defined with
lambdas, functions, unbound methods, bound methods or indeed any other callable
that returns True or False. For convenience asq also provides some
predicate factories and combinators to concisely build predicates for common
situations.

Lambdas

>>> numbers = [0, 56, 23, 78, 94, 56, 12, 34, 36, 90, 23, 76, 4, 67]
>>> query(numbers).where(lambda x: x > 35).to_list()
[56, 78, 94, 56, 36, 90, 76, 67]

Functions

Here we use the bool() built-in function to remove zeros from the list:

>>> numbers = [0, 56, 23, 78, 94, 56, 12, 34, 36, 90, 23, 76, 4, 67]
>>> query(numbers).where(bool).to_list()
[56, 23, 78, 94, 56, 12, 34, 36, 90, 23, 76, 4, 67]

Unbound methods

Here we use an unbound method of the str class to extract only alphabetic
strings from a list:

>>> a = ['zero', 'one', '2', '3', 'four', 'five', '6', 'seven', 'eight', '9']
>>> query(a).where(str.isalpha).to_list()
['zero', 'one', 'four', 'five', 'seven', 'eight']

Bound methods

Bound methods are obtained by referencing the method of an instance rather
than the method of a class. That is, the instance referred to by the self
parameter passed as the first argument of a method has already been determined.

To illustrate, here we create a variation of Multiplier class earlier with
a method to test whether a given number is a multiple of the supplied factor:

>>> numbers = [1, 18, 34, 23, 56, 48, 45]
>>>
>>> class Multiplier(object):
 ... def __init__(self, factor):
 ... self.factor = factor
 ... def is_multiple(self, value):
 ... return value % self.factor == 0
 ...
 >>> six_multiplier = Multiplier(6)
 >>>
 >>> is_six_a_factor = six_multiplier.is_multiple
 >>> is_six_a_factor
 <bound method Multiplier.is_multiple of <__main__.Multiplier object at 0x029FEDF0>>
 >>>
 >>> query(numbers).where(is_six_a_factor).to_list()
 [18, 48]

This has the effect of passing each element of the sequence in turn as an
argument to the bound method which returns True or False.

Predicate factories

For complex predicates inline lambdas can become quite verbose and have
limited readability. To mitigate this somewhat, asq provides some
predicate factories and predicate combinators.

The provided predicates are:

	Predicate factory
	Created selector function

	eq_(value)
	lambda x: x == value

	ne_(value)
	lambda x: x != value

	lt_(value)
	lambda x: x < value

	le_(value)
	lambda x: x <= value

	ge_(value)
	lambda x: x >= value

	gt_(value)
	lambda x: x >= value

	is_(value)
	lambda x: x is value

	contains_(value)
	lambda x: value in x

Predicates are available in the predicates module of the asq package:

>>> from asq.predicates import *

So given:

>>> numbers = [0, 56, 23, 78, 94, 56, 12, 34, 36, 90, 23, 76, 4, 67]

the query expression:

>>> query(numbers).where(lambda x: x > 35).take_while(lambda x: x < 90).to_list()
[56, 78]

could be written more succinctly rendered as:

>>> query(numbers).where(gt_(35)).take_while(lt_(90)).to_list()
[56, 78]

Predicate combinator factories

Some simple combinators are provided to allow the predicate factories to be
combined to form more powerful expressions. These combinators are,

	Combinator factory
	Created selector function

	not_(a)
	lambda x: not a(x)

	and_(a, b)
	lambda x: a(x) and b(x)

	or_(a, b)
	lambda x: a(x) or b(x)

	xor(a, b)
	lambda x: a(x) != b(x)

where a and b are themselves predicates.

So given:

>>> numbers = [0, 56, 23, 78, 94, 56, 12, 34, 36, 90, 23, 76, 4, 67]

the query expression:

>>> query(numbers).where(lambda x: x > 20 and x < 80).to_list()
[56, 23, 78, 56, 34, 36, 23, 76, 67]

could be expressed as:

>>> query(numbers).where(and_(gt_(20), lt_(80).to_list()
[56, 23, 78, 56, 34, 36, 23, 76, 67]

Although complex expressions are probably still better expressed as lambdas or
separate functions altogether.

Using selector factories for predicates

A predicate is any callable that returns True or False, so any selector
which returns True or False is by definition a predicate. This means
that the selector factories k_(), a_() and m_() may also be used as
predicate factories so long as they return boolean values. They may also be
used with the predicate combinators. For example, consider a sequence of
Employee objects which have an intern attribute which evaluates to True
or False. We can filter out interns using this query:

>>> query(employees).where(not_(a_('intern')))

Comparers

Some of the query operators accept equality comparers. Equality comparers are
callables which can be used to determine whether two value should be considered
equal for the purposes of a query. For example, the contains() query
operator accepts an optional equality comparer used for determining membership.
To illustrate, we will use the insensitive_eq() comparer which does a
case insensitive equality test:

>>> from asq.comparers import insensitive_eq
>>> names = ['Matthew', 'Mark', 'John']
>>> query(names).contains('MARK', insensitive_eq)
True

Records

In all of the examples in this documentation so far, the data to be queried has
either been represented as combinations of built-in Python types such as lists
and dictionaries, or we have needed define specific classes to represented our
data. Sometimes there’s a need for a type without the syntactic clutter of say
dictionaries, but without the overhead of creating a whole class with methods;
you just want to bunch some data together. The Record type provided by
asq fulfills this need. A convenience function called new() can be
used to concisely create Records. To use new, just pass in named arguments to
define the Record properties:

>>> product = new(id=5723, name="Mouse", price=33, total_revenue=23212)
>>> product
Record(id=5723, price=33, total_revenue=23212, name='Mouse')

And retrieve properties using regular Python attribute syntax:

>>> product.price
33

This can be useful when we want to carry several derived values through a query
such as in this example where we create Records containing the full names and
highest score of students, we then sort the records by the high score:

>>> from pupils import students
>>> students
[{'lastname': 'Blogs', 'firstname': 'Joe', 'scores': [56, 23, 21, 89]},
 {'lastname': 'Doe', 'firstname': 'John', 'scores': [34, 12, 92, 93]},
 {'lastname': 'Doe', 'firstname': 'Jane', 'scores': [33, 94, 91, 13]},
 {'lastname': 'Nordmann', 'firstname': 'Ola', 'scores': [98, 23, 98, 87]},
 {'lastname': 'Nordmann', 'firstname': 'Kari', 'scores': [86, 37, 88, 87]},
 {'lastname': 'Rossi', 'firstname': 'Mario', 'scores': [37, 95, 45, 18]}]
>>> query(students).select(lambda s: new(name="{firstname} {lastname}".format(**s),
... high_score=max(s['scores']))) \
... .order_by(a_('high_score').to_list()
[Record(high_score=88, name='Kari Nordmann'),
 Record(high_score=89, name='Joe Blogs'),
 Record(high_score=93, name='John Doe'),
 Record(high_score=94, name='Jane Doe'),
 Record(high_score=95, name='Mario Rossi'),
 Record(high_score=98, name='Ola Nordmann')]

Debugging

With potentially so much deferred execution occurring, debugging asq query
expressions using tools such as debuggers can be challenging. Furthermore, since
queries are expressions use of statements such as Python 2 print can be
awkward.

To ease debugging, asq provides a logging facility which can be used to
display intermediate results with an optional ability for force full, rather
than lazy, evaluation of sequences.

To demonstrate, let’s start with a bug-ridden implementation of Fizz-Buzz
implemented with asq. Fizz-Buzz is a game where the numbers 1 to 100 are
read aloud but for numbers divisible by three “Fizz” is shouted, and for numbers
divisible by five, “Buzz” is shouted.

>>> from asq.initiators import integers
>>> integers(1, 100).select(lambda x: "Fizz" if x % 3 == 0 else x) \
... .select(lambda x: "Buzz" if x % 5 == 0 else x).to_list()

At a glance this looks like it should work, but when run we get:

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "asq/queryables.py", line 1910, in to_list
 lst = list(self)
 File "<stdin>", line 1, in <lambda>
TypeError: not all arguments converted during string formatting

To investigate further it would be useful to examine the intermediate results.
We can do this using the log() query operator, which accepts any logger
supporting a debug(message) method. We can get just such a logger from the
Python standard library logging module:

>>> import logging
>>> clog = logging.getLogger("clog")
>>> clog.setLevel(logging.DEBUG)

which creates a console logger we have called clog:

>>> from asq.initiators import integers
>>> integers(1, 100) \
... .select(lambda x: "Fizz" if x % 3 == 0 else x).log(clog, label="Fizz select"). \
... .select(lambda x: "Buzz" if x % 5 == 0 else x).to_list()
DEBUG:clog:Fizz select : BEGIN (DEFERRED)
DEBUG:clog:Fizz select : [0] yields 1
DEBUG:clog:Fizz select : [1] yields 2
DEBUG:clog:Fizz select : [2] yields 'Fizz'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "asq/queryables.py", line 1910, in to_list
 lst = list(self)
 File "<stdin>", line 1, in <lambda>
TypeError: not all arguments converted during string formatting

so we can see the the first select operator yields 1, 2, ‘Fizz’ before the
failure. Now it’s perhaps more obvious that when x in the second lambda is equal
to ‘Fizz’ the % operator will be operating on a string on its left-hand side
and so the `% will perform string interpolation rather than modulus. This is
the cause of the error we see.

We can fix this by not applying the modulus operator in the case that x is
‘Fizz’:

>>> integers(1, 100).select(lambda x: "Fizz" if x % 3 == 0 else x).log(clog, label="Fizz select") \
 .select(lambda x: "Buzz" if x != "Fizz" and x % 5 == 0 else x).to_list()
DEBUG:clog:Fizz select : BEGIN (DEFERRED)
DEBUG:clog:Fizz select : [0] yields 1
DEBUG:clog:Fizz select : [1] yields 2
DEBUG:clog:Fizz select : [2] yields 'Fizz'
DEBUG:clog:Fizz select : [3] yields 4
DEBUG:clog:Fizz select : [4] yields 5
DEBUG:clog:Fizz select : [5] yields 'Fizz'
DEBUG:clog:Fizz select : [6] yields 7
DEBUG:clog:Fizz select : [7] yields 8
DEBUG:clog:Fizz select : [8] yields 'Fizz'
DEBUG:clog:Fizz select : [9] yields 10
DEBUG:clog:Fizz select : [10] yields 11
DEBUG:clog:Fizz select : [11] yields 'Fizz'
DEBUG:clog:Fizz select : [12] yields 13
DEBUG:clog:Fizz select : [13] yields 14
DEBUG:clog:Fizz select : [14] yields 'Fizz'
DEBUG:clog:Fizz select : [15] yields 16
DEBUG:clog:Fizz select : [16] yields 17
...
DEBUG:clog2:Fizz select : [98] yields 'Fizz'
DEBUG:clog2:Fizz select : [99] yields 100
DEBUG:clog2:Fizz select : END (DEFERRED)
[1, 2, 'Fizz', 4, 'Buzz', 'Fizz', 7, 8, 'Fizz', 'Buzz', 11, 'Fizz', 13, 14,
 'Fizz', 16, 17, 'Fizz', 19, 'Buzz', 'Fizz', 22, 23, 'Fizz', 'Buzz', 26,
 'Fizz', 28, 29, 'Fizz', 31, 32, 'Fizz', 34, 'Buzz', 'Fizz', 37, 38, 'Fizz',
 'Buzz', 41, 'Fizz', 43, 44, 'Fizz', 46, 47, 'Fizz', 49, 'Buzz', 'Fizz', 52,
 53, 'Fizz', 'Buzz', 56, 'Fizz', 58, 59, 'Fizz', 61, 62, 'Fizz', 64, 'Buzz',
 'Fizz', 67, 68, 'Fizz', 'Buzz', 71, 'Fizz', 73, 74, 'Fizz', 76, 77, 'Fizz',
 79, 'Buzz', 'Fizz', 82, 83, 'Fizz', 'Buzz', 86, 'Fizz', 88, 89, 'Fizz', 91,
 92, 'Fizz', 94, 'Buzz', 'Fizz', 97, 98, 'Fizz', 'Buzz']

That problem is solved, but inspection of the output shows that our query
expression produces incorrect results for those numbers which are multiples of
both 3 and 5, such as 15, for which we should be returning ‘FizzBuzz’. For the
sake of completeness, let’s modify the expression to deal with this:

>>> integers(1, 100).select(lambda x: "FizzBuzz" if x % 15 == 0 else x) \
 .select(lambda x: "Fizz" if x != "FizzBuzz" and x % 3 == 0 else x) \
 .select(lambda x: "Buzz" if x != "FizzBuzz" and x != "Fizz" and x % 5 == 0 else x).to_list()
[1, 2, 'Fizz', 4, 'Buzz', 'Fizz', 7, 8, 'Fizz', 'Buzz', 11, 'Fizz', 13, 14,
 'FizzBuzz', 16, 17, 'Fizz', 19, 'Buzz', 'Fizz', 22, 23, 'Fizz', 'Buzz', 26,
 'Fizz', 28, 29, 'FizzBuzz', 31, 32, 'Fizz', 34, 'Buzz', 'Fizz', 37, 38,
 'Fizz', 'Buzz', 41, 'Fizz', 43, 44, 'FizzBuzz', 46, 47, 'Fizz', 49, 'Buzz',
 'Fizz', 52, 53, 'Fizz', 'Buzz', 56, 'Fizz', 58, 59, 'FizzBuzz', 61, 62,
 'Fizz', 64, 'Buzz', 'Fizz', 67, 68, 'Fizz', 'Buzz', 71, 'Fizz', 73, 74,
 'FizzBuzz', 76, 77, 'Fizz', 79, 'Buzz', 'Fizz', 82, 83, 'Fizz', 'Buzz', 86,
 'Fizz', 88, 89, 'FizzBuzz', 91, 92, 'Fizz', 94, 'Buzz', 'Fizz', 97, 98,
 'Fizz', 'Buzz']

Extending asq

For .NET developers

The @extend decorator described here performs the same role as C# extension
methods to IEnumerable play in Microsoft’s LINQ.

The fluent interface of asq works by chaining method calls on Queryable
types, so to extend asq with new query operators must be able to add
methods to Queryable. New methods added in this way must have a particular
structure in order to be usable in the middle of a query chain.

To define a new query operator, use the @extend function decorator from the
asq.extension package to decorator a module scope function. To illustrate,
let’s add a new operator which adds a separating item between existing items:

@extend(Queryable)
def separate_with(self, separator):
 '''Insert a separator between items.

 Note: This method uses deferred execution.

 Args:
 separator: The separating element to be inserted between each source
 element.

 Returns:
 A Queryable over the separated sequence.
 '''

 # Validate the arguments. It is important to validate the arguments
 # eagerly, when the operator called, rather than when the result is
 # evaluated to ease debugging.
 if self.closed():
 raise ValueError("Attempt to call separate_with() on a closed Queryable.")

 # In order to get deferred execution (lazy evaluation) we need to define
 # a generator. This generator is also a closure over the parameters to
 # separate_with, namely 'self' and 'separator'.
 def generator():
 # Create an iterator over the source sequence - self is a Queryable
 # which is iterable.
 i = iter(self)

 # Attempt to yield the first element, which may or may not exist;
 # next() will raise StopIteration if it does not, so we exit.
 try:
 yield next(i)
 except StopIteration:
 return

 # Alternately yield a separator and the next element for all
 # remaining elements in the source sequence.
 for item in i:
 yield separator
 yield item

 # Create a new Queryable from the generator, by calling the _create()
 # factory function, rather than by calling the Queryable constructor
 # directly. This ensures that the correct subclass of Queryable is
 # created.
 return self._create(generator())

The @extend decorator installs the new operator so it may be used immediately:

a = [1, 4, 9, 2, 3]
query(a).select(lambda x: x*x).separate_with(0).to_list()

which gives:

[1, 0, 16, 0, 81, 0, 4, 0, 9]

API Reference

asq

	asq.initiators

	asq.queryables
	asq.queryables.Queryable

	asq.queryables.OrderedQueryable

	asq.queryables.Lookup

	asq.queryables.Grouping

	asq.selectors
	Selectors

	Selector factories

	asq.predicates
	Predicate factories

	Predicate combinators

	asq.record
	asq.record.Record

	asq.record.new

	asq.namedelements
	asq.namedelements.IndexedElement

	asq.namedelements.KeyedElement

	asq.extension

asq.initiators

Initiators are factory functions for creating Queryables.

Initiators are so-called because they are used to initiate a query expression
using the fluent interface of asq which uses method-chaining to compose
complex queries from the query operators provided by queryables.

	query
	Make an iterable queryable.

	empty
	An empty Queryable.

	integers
	Generates in sequence the integral numbers within a range.

	repeat
	Generate a sequence with one repeated value.

	
asq.initiators.query(iterable)

	Make an iterable queryable.

Use this function as an entry-point to the asq system of chainable query
methods.

Note

Currently this factory only provides support for objects supporting
the iterator protocol. Future implementations may support other
providers.

	Parameters:	iterable – Any object supporting the iterator protocol.

	Returns:	An instance of Queryable.

	Raises:	TypeError - If iterable is not actually iterable

Examples

Create a queryable from a list:

>>> from asq.initiators import query
>>> a = [1, 7, 9, 4, 3, 2]
>>> q = query(a)
>>> q
Queryable([1, 7, 9, 4, 3, 2])
>>> q.to_list()
[1, 7, 9, 4, 3, 2]

	
asq.initiators.empty()

	An empty Queryable.

Note

The same empty instance will be returned each time.

	Returns:	A Queryable over an empty sequence.

Examples

Create a queryable from a list:

>>> from asq.initiators import empty
>>> q = empty()
>>> q
Queryable(())
>>> q.to_list()
[]

See that empty() always returns the same instance:

>>> a = empty()
>>> b = empty()
>>> a is b
True

	
asq.initiators.integers(start, count)

	Generates in sequence the integral numbers within a range.

Note

This method uses deferred execution.

	Parameters:	
	start – The first integer in the sequence.

	count – The number of sequential integers to generate.

	Returns:	A Queryable over the specified range of integers.

	Raises:	ValueError - If count is negative.

Examples

Create the first five integers:

>>> from asq.initiators import integers
>>> numbers = integers(0, 5)
>>> numbers
Queryable(range(0, 5))
>>> numbers.to_list()
[0, 1, 2, 3, 4]

	
asq.initiators.repeat(element, count)

	Generate a sequence with one repeated value.

Note

This method uses deferred execution.

	Parameters:	
	element – The value to be repeated.

	count – The number of times to repeat the value.

	Raises:	ValueError - If the count is negative.

Examples

Repeat the letter x five times:

>>> from asq.initiators import repeat
>>> q = repeat('x', 5)
>>> q
Queryable(repeat('x', 5))
>>> q.to_list()
['x', 'x', 'x', 'x', 'x']

asq.queryables

Classes which support the Queryable interface.

asq.queryables.Queryable

	
class asq.queryables.Queryable(iterable)

	Queries over iterables executed serially.

Queryable objects are constructed from iterables.

	Queryable.__contains__
	Support for membership testing using the ‘in’ operator.

	Queryable.__enter__
	Support for the context manager protocol.

	Queryable.__eq__
	Determine value equality with another iterable.

	Queryable.__exit__
	Support for the context manager protocol.

	Queryable.__getitem__
	Support for indexing into the sequence using square brackets.

	Queryable.__init__
	Construct a Queryable from any iterable.

	Queryable.__iter__
	Support for the iterator protocol.

	Queryable.__ne__
	Determine value inequality with another iterable.

	Queryable.__reversed__
	Support for sequence reversal using the reversed() built-in.

	Queryable.__repr__
	Returns a stringified representation of the Queryable.

	Queryable.__str__
	Returns a stringified representation of the Queryable.

	Queryable.aggregate
	Apply a function over a sequence to produce a single result.

	Queryable.all
	Determine if all elements in the source sequence satisfy a condition.

	Queryable.any
	Determine if the source sequence contains any elements which satisfy the predicate.

	Queryable.as_parallel
	Return a ParallelQueryable for parallel execution of queries.

	Queryable.average
	Return the arithmetic mean of the values in the sequence..

	Queryable.close
	Closes the queryable.

	Queryable.closed
	Determine whether the Queryable has been closed.

	Queryable.concat
	Concatenates two sequences.

	Queryable.contains
	Determines whether the sequence contains a particular value.

	Queryable.count
	Return the number of elements (which match an optional predicate).

	Queryable.default_if_empty
	If the source sequence is empty return a single element sequence containing the supplied default value, otherwise return the source sequence unchanged.

	Queryable.difference
	Returns those elements which are in the source sequence which are not in the second_iterable.

	Queryable.distinct
	Eliminate duplicate elements from a sequence.

	Queryable.element_at
	Return the element at ordinal index.

	Queryable.first
	The first element in a sequence (optionally satisfying a predicate).

	Queryable.first_or_default
	The first element (optionally satisfying a predicate) or a default.

	Queryable.group_by
	Groups the elements according to the value of a key extracted by a selector function.

	Queryable.group_join
	Match elements of two sequences using keys and group the results.

	Queryable.intersect
	Returns those elements which are both in the source sequence and in the second_iterable.

	Queryable.join
	Perform an inner join with a second sequence using selected keys.

	Queryable.last
	The last element in a sequence (optionally satisfying a predicate).

	Queryable.last_or_default
	The last element (optionally satisfying a predicate) or a default.

	Queryable.log
	Log query result consumption details to a logger.

	Queryable.max
	Return the maximum value in a sequence.

	Queryable.min
	Return the minimum value in a sequence.

	Queryable.of_type
	Filters elements according to whether they are of a certain type.

	Queryable.order_by
	Sorts by a key in ascending order.

	Queryable.order_by_descending
	Sorts by a key in descending order.

	Queryable.select
	Transforms each element of a sequence into a new form.

	Queryable.select_many
	Projects each element of a sequence to an intermediate new sequence, flattens the resulting sequences into one sequence and optionally transforms the flattened sequence using a selector function.

	Queryable.select_many_with_correspondence
	Projects each element of a sequence to an intermediate new sequence, and flattens the resulting sequence, into one sequence and uses a selector function to incorporate the corresponding source for each item in the result sequence.

	Queryable.select_many_with_index
	Projects each element of a sequence to an intermediate new sequence, incorporating the index of the element, flattens the resulting sequence into one sequence and optionally transforms the flattened sequence using a selector function.

	Queryable.select_with_correspondence
	Apply a callable to each element in an input sequence, generating a new sequence of 2-tuples where the first element is the input value and the second is the transformed input value.

	Queryable.select_with_index
	Transforms each element of a sequence into a new form, incorporating the index of the element.

	Queryable.sequence_equal
	Determine whether two sequences are equal by elementwise comparison.

	Queryable.single
	The only element (which satisfies a condition).

	Queryable.single_or_default
	The only element (which satisfies a condition) or a default.

	Queryable.skip
	Skip the first count contiguous elements of the source sequence.

	Queryable.skip_while
	Omit elements from the start for which a predicate is True.

	Queryable.sum
	Return the arithmetic sum of the values in the sequence..

	Queryable.take
	Returns a specified number of elements from the start of a sequence.

	Queryable.take_while
	Returns elements from the start while the predicate is True.

	Queryable.to_dictionary
	Build a dictionary from the source sequence.

	Queryable.to_list
	Convert the source sequence to a list.

	Queryable.to_lookup
	Returns a Lookup object, using the provided selector to generate a key for each item.

	Queryable.to_set
	Convert the source sequence to a set.

	Queryable.to_str
	Build a string from the source sequence.

	Queryable.to_tuple
	Convert the source sequence to a tuple.

	Queryable.union
	Returns those elements which are either in the source sequence or in the second_iterable, or in both.

	Queryable.where
	Filters elements according to whether they match a predicate.

	Queryable.zip
	Elementwise combination of two sequences.

	
__contains__(item)

	Support for membership testing using the ‘in’ operator.

	Parameters:	item – The item for which to test membership.

	Returns:	True if item is in the sequence, otherwise False.

Note

A chainable query operator called contains() (no underscores)
is also provided.

Example

Test whether 49 is one of the squares of two, seven or nine:

>>> a = [2, 7, 9]
>>> 49 in query(a).select(lambda x: x*x)
True

	
__enter__()

	Support for the context manager protocol.

	
__eq__(rhs)

	Determine value equality with another iterable.

	Parameters:	rhs – Any iterable collection.

	Returns:	True if the sequences are equal in value, otherwise False.

Note

This in the infix operator equivalent of the sequence_equal()
query operator.

Examples

Test whether a sequence is equal to a list:

>>> expected = [2, 4, 8, 16, 32]
>>> range(1, 5).select(lambda x: x ** 2) == expected
True

	
__exit__(type, value, traceback)

	Support for the context manager protocol.

Ensures that close() is called on the Queryable.

	
__getitem__(index)

	Support for indexing into the sequence using square brackets.

Equivalent to element_at().

	Parameters:	index – The index should be between zero and count() - 1 inclusive.
Negative indices are not interpreted in the same way they are
for built-in lists, and are considered out-of-range.

	Returns:	The value of the element at offset index into the sequence.

	Raises:	
	ValueError - If the Queryable is closed().

	IndexError - If the index is out-of-range.

Note

A chainable query operator called element_at() is also
provided.

Examples

Retrieve the fourth element of a greater than six:

>>> a = [7, 3, 9, 2, 1, 10, 11, 4, 13]
>>> query(a).where(lambda x: x > 6)[3]
11

	
__init__(iterable)

	Construct a Queryable from any iterable.

	Parameters:	iterable – Any object supporting the iterator protocol.

	Raises:	TypeError - if iterable does not support the iterator protocol.

Example

Initialise a queryable from a list:

>>> a = [1, 5, 7, 8]
>>> queryable = Queryable(a)

Note

The query(iterable) initiator should normally be used in
preference to calling the Queryable constructor directly.

	
__iter__()

	Support for the iterator protocol.

Allows Queryable instances to be used anywhere an iterable is required.

	Returns:	An iterator over the values in the query result.

	Raises:	ValueError - If the Queryable has been closed().

Note

This method should not usually be called directly; use the
iter() built-in or other Python constructs which check for the
presence of __iter__(), such as for loops.

Examples

Call __iter__() indirectly through the iter() built-in to
obtain an iterator over the query results:

>>> a = [8, 9, 2]
>>> q = query(a)
>>> iterator = iter(q)
>>> next(iterator)
8
>>> next(iterator)
9
>>> next(iterator)
2
>>> next(iterator)
StopIteration

Call __iter__() indirectly by using a for loop:

>>> a = [1, 9, 4]
>>> q = query(a)
>>> for v in q:
... print(v)
...
1
9
4

	
__ne__(rhs)

	Determine value inequality with another iterable.

	Parameters:	rhs – Any iterable collection.

	Returns:	True if the sequences are inequal in value, otherwise False.

Examples

Test whether a sequence is not equal to a list:

>>> expected = [1, 2, 3]
>>> range(1, 5).select(lambda x: x ** 2) != expected
True

	
__reversed__()

	Support for sequence reversal using the reversed() built-in.

Called by reversed() to implement reverse iteration.

Equivalent to the reverse() method.

	Returns:	A Queryable over the reversed sequence.

	Raises:	ValueError - If the Queryable is closed().

Note

A chainable query operator called reverse() is also
provided.

Note

This method should not usually be called directly; use the
reversed() built-in or other Python constructs which check for
the presence of __reversed__().

Example

Create a reverse iterator over a queryable for use with a for
loop:

>>> a = [7, 3, 9, 2, 1]
>>> q = query(a)
>>> for v in reversed(q):
... print(v)
...
1
2
9
3
7

	
__repr__()

	Returns a stringified representation of the Queryable.

The string will not necessarily contain the sequence data.

	Returns:	A stringified representation of the Queryable.

Note

This method should not usually be called directly; use the
str() built-in or other Python constructs which check for the
presence of __str__ such as string interpolation functions.

Provide a string representation of the Queryable using the repr()
built-in:

>>> a = [9, 7, 8]
>>> q = query(a)
>>> str(q)
'Queryable([9, 7, 8])'

	
__str__()

	Returns a stringified representation of the Queryable.

The string will necessarily contain the sequence data.

	Returns:	A stringified representation of the Queryable.

Note

This method should not usually be called directly; use the
str() built-in or other Python constructs which check for the
presence of __str__ such as string interpolation functions.

Note

In order to convert the Queryable sequence to a string based on the
element values, consider using the to_str() method.

Example

Convert the Queryable to a string using the str() built-in:

>>> a = [9, 7, 8]
>>> q = query(a)
>>> str(q)
'Queryable([9, 7, 8])'

	
aggregate(reducer, seed=sentinel, result_selector=identity)

	Apply a function over a sequence to produce a single result.

Apply a binary function cumulatively to the elements of the source
sequence so as to reduce the iterable to a single value.

Note

This method uses immediate execution.

	Parameters:	
	reducer – A binary function the first positional argument of which
is an accumulated value and the second is the update value from
the source sequence. The return value should be the new
accumulated value after the update value has been incorporated.

	seed – An optional value used to initialise the accumulator before
iteration over the source sequence. If seed is omitted the
and the source sequence contains only one item, then that item
is returned.

	result_selector – An optional unary function applied to the final
accumulator value to produce the result. If omitted, defaults
to the identity function.

	Raises:	
	ValueError - If called on an empty sequence with no seed value.

	TypeError - If reducer is not callable.

	TypeError - If result_selector is not callable.

Examples

Compute the product of a list of numbers:

>>> numbers = [4, 7, 3, 2, 1, 9]
>>> query(numbers).aggregate(lambda accumulator, update: accumulator * update)
1512

Concatenate strings to an initial seed value:

>>> cheeses = ['Cheddar', 'Stilton', 'Cheshire', 'Beaufort', 'Brie']
>>> query(cheeses).aggregate(lambda a, u: a + ' ' + u, seed="Cheeses:")
'Cheeses: Cheddar Stilton Cheshire Beaufort Brie'

Concatenate text fragments using operator.add() and return the
number of words:

>>> from operator import add
>>> fragments = ['The quick ', 'brown ', 'fox jumped over ', 'the ', 'lazy dog.']
>>> query(fragments).aggregate(add, lambda result: len(result.split()))
9

	
all(predicate=bool)

	Determine if all elements in the source sequence satisfy a condition.

All of the source sequence will be consumed.

Note

This method uses immediate execution.

	Parameters:	predicate (callable) – An optional single argument function used to
test each elements. If omitted, the bool() function is used
resulting in the elements being tested directly.

	Returns:	True if all elements in the sequence meet the predicate condition,
otherwise False.

	Raises:	
	ValueError - If the Queryable is closed()

	TypeError - If predicate is not callable.

Examples

Determine whether all values evaluate to True in a boolean context:

>>> items = [5, 2, "camel", 3.142, (3, 4, 9)]
>>> query(objects).all()
True

Check that all numbers are divisible by 13:

>>> numbers = [260, 273, 286, 299, 312, 325, 338, 351, 364, 377]
>>> query(numbers).all(lambda x: x % 13 == 0)
True

	
any(predicate=None)

	Determine if the source sequence contains any elements which satisfy
the predicate.

Only enough of the sequence to satisfy the predicate once is consumed.

Note

This method uses immediate execution.

	Parameters:	predicate – An optional single argument function used to test each
element. If omitted, or None, this method returns True if there
is at least one element in the source.

	Returns:	True if the sequence contains at least one element which satisfies
the predicate, otherwise False.

	Raises:	ValueError - If the Queryable is closed()

Examples

Determine whether the sequence contains any items:

>>> items = [0, 0, 0]
>>> query(items).any()
True

Determine whether the sequence contains any items which are a multiple
of 13:

>>> numbers = [98, 458, 32, 876, 12, 9, 325]
>>> query(numbers).any(lambda x: x % 13 == 0)
True

	
as_parallel(pool=None)

	Return a ParallelQueryable for parallel execution of queries.

Warning

This feature should be considered experimental alpha quality.

	Parameters:	pool – An optional multiprocessing pool which will provide execution
resources for parellel processing. If omitted, a pool will be
created if necessary and managed internally.

	Returns:	A ParallelQueryable on which all the standard query operators may
be called.

	
average(selector=identity)

	Return the arithmetic mean of the values in the sequence..

All of the source sequence will be consumed.

Note

This method uses immediate execution.

	Parameters:	selector – An optional single argument function which will be used
to project the elements of the sequence. If omitted, the
identity function is used.

	Returns:	The arithmetic mean value of the projected sequence.

	Raises:	
	ValueError - If the Queryable has been closed.

	ValueError - I the source sequence is empty.

Examples

Compute the average of some numbers:

>>> numbers = [98, 458, 32, 876, 12, 9, 325]
>>> query(numbers).average()
258.57142857142856

Compute the mean square of a sequence:

>>> numbers = [98, 458, 32, 876, 12, 9, 325]
>>> query(numbers).average(lambda x: x*x)
156231.14285714287

	
close()

	Closes the queryable.

The Queryable should not be used following a call to close. This method
is idempotent. Other calls to a Queryable following close() will raise
ValueError.

	
closed()

	Determine whether the Queryable has been closed.

	Returns:	True if closed, otherwise False.

	
concat(second_iterable)

	Concatenates two sequences.

Note

This method uses deferred execution.

	Parameters:	second_iterable – The sequence to concatenate on to the sequence.

	Returns:	A Queryable over the concatenated sequences.

	Raises:	
	ValueError - If the Queryable is closed().

	TypeError - If second_iterable is not in fact iterable.

Example

Concatenate two sequences of numbers:

>>> numbers = [1, 45, 23, 34]
>>> query(numbers).concat([98, 23, 23, 12]).to_list()
[1, 45, 23, 34, 98, 23, 23, 12]

	
contains(value, equality_comparer=operator.eq)

	Determines whether the sequence contains a particular value.

Execution is immediate. Depending on the type of the sequence, all or
none of the sequence may be consumed by this operation.

Note

This method uses immediate execution.

	Parameters:	value – The value to test for membership of the sequence

	Returns:	True if value is in the sequence, otherwise False.

	Raises:	ValueError - If the Queryable has been closed.

Example

Check whether a sentence contains a particular word:

>>> words = ['A', 'man', 'a', 'plan', 'a', 'canal', 'Panama']
>>> words.contains('plan')
True

Check whether a sentence contains a particular word with a case-
insensitive check:

>>> words = ['A', 'man', 'a', 'plan', 'a', 'canal', 'Panama']
>>> query(words).contains('panama',
... lambda lhs, rhs: lhs.lower() == rhs.lower())
True

	
count(predicate=None)

	Return the number of elements (which match an optional predicate).

Note

This method uses immediate execution.

	Parameters:	predicate – An optional unary predicate function used to identify
elements which will be counted. The single positional argument
of the function is the element value. The function should
return True or False.

	Returns:	The number of elements in the sequence if the predicate is None
(the default), or if the predicate is supplied the number of
elements for which the predicate evaluates to True.

	Raises:	
	ValueError - If the Queryable is closed().

	TypeError - If predicate is neither None nor a callable.

Examples

Count the number of elements in a sequence:

>>> people = ['Sheila', 'Jim', 'Fred']
>>> query(people).count()
3

Count the number of names containing the letter ‘i’:

>>> people = ['Sheila', 'Jim', 'Fred']
>>> query(people).count(lambda s: 'i' in s)
3

	
default_if_empty(default)

	If the source sequence is empty return a single element sequence
containing the supplied default value, otherwise return the source
sequence unchanged.

Note

This method uses deferred execution.

	Parameters:	default – The element to be returned if the source sequence is empty.

	Returns:	The source sequence, or if the source sequence is empty an sequence
containing a single element with the supplied default value.

	Raises:	ValueError - If the Queryable has been closed.

Examples

An empty sequence triggering the default return:

>>> e = []
>>> query(e).default_if_empty(97).to_list()
[97]

A non-empty sequence passing through:

>>> f = [70, 45, 34]
>>> query(f).default_if_empty(97).to_list()
[70, 45, 34]

	
difference(second_iterable, selector=identity)

	Returns those elements which are in the source sequence which are not
in the second_iterable.

This method is equivalent to the Except() LINQ operator, renamed to a
valid Python identifier.

Note

This method uses deferred execution, but as soon as execution
commences the entirety of the second_iterable is consumed;
therefore, although the source sequence may be infinite the
second_iterable must be finite.

	Parameters:	
	second_iterable – Elements from this sequence are excluded from the
returned sequence. This sequence will be consumed in its
entirety, so must be finite.

	selector – A optional single argument function with selects from the
elements of both sequences the values which will be
compared for equality. If omitted the identity function will
be used.

	Returns:	A sequence containing all elements in the source sequence except
those which are also members of the second sequence.

	Raises:	
	ValueError - If the Queryable has been closed.

	TypeError - If the second_iterable is not in fact iterable.

	TypeError - If the selector is not callable.

Examples

Numbers in the first list which are not in the second list:

>>> a = [0, 2, 4, 5, 6, 8, 9]
>>> b = [1, 3, 5, 7, 8]
>>> query(a).difference(b).to_list()
[0, 2, 4, 6, 9]

Countries in the first list which are not in the second list, compared
in a case-insensitive manner:

>>> a = ['UK', 'Canada', 'qatar', 'china', 'New Zealand', 'Iceland']
>>> b = ['iceland', 'CANADA', 'uk']
>>> query(a).difference(b, lambda x: x.lower()).to_list()
['qatar', 'china', 'New Zealand']

	
distinct(selector=identity)

	Eliminate duplicate elements from a sequence.

Note

This method uses deferred execution.

	Parameters:	selector – An optional single argument function the result of which
is the value compared for uniqueness against elements already
consumed. If omitted, the element value itself is compared for
uniqueness.

	Returns:	Unique elements of the source sequence as determined by the
selector function. Note that it is unprojected elements that are
returned, even if a selector was provided.

	Raises:	
	ValueError - If the Queryable is closed.

	TypeError - If the selector is not callable.

Examples

Remove duplicate numbers:

>>> d = [0, 2, 4, 5, 6, 8, 9, 1, 3, 5, 7, 8]
>>> query(d).distinct().to_list()
[0, 2, 4, 5, 6, 8, 9, 1, 3, 7]

A sequence such that no two numbers in the result have digits which
sum to the same value:

>>> e = [10, 34, 56, 43, 74, 25, 11, 89]
>>> def sum_of_digits(num):
... return sum(int(i) for i in str(num))
...
>>> query(e).distinct(sum_of_digits).to_list()
[10, 34, 56, 11, 89]

	
element_at(index)

	Return the element at ordinal index.

Note

This method uses immediate execution.

	Parameters:	index – The index of the element to be returned.

	Returns:	The element at ordinal index in the source sequence.

	Raises:	
	ValueError - If the Queryable is closed().

	ValueError - If index is out of range.

Example

Retrieve the fifth element from a list:

>>> f = [10, 34, 56, 11, 89]
>>> query(f).element_at(4)
89

	
first(predicate=None)

	The first element in a sequence (optionally satisfying a predicate).

If the predicate is omitted or is None this query returns the first
element in the sequence; otherwise, it returns the first element in
the sequence for which the predicate evaluates to True. Exceptions are
raised if there is no such element.

Note

This method uses immediate execution.

	Parameters:	predicate – An optional unary predicate function, the only argument
to which is the element. The return value should be True for
matching elements, otherwise False. If the predicate is
omitted or None the first element of the source sequence will
be returned.

	Returns:	The first element of the sequence if predicate is None, otherwise
the first element for which the predicate returns True.

	Raises:	
	ValueError - If the Queryable is closed.

	ValueError - If the source sequence is empty.

	ValueError - If there are no elements matching the predicate.

	TypeError - If the predicate is not callable.

Examples

Retrieve the first element of a sequence:

>>> e = [10, 34, 56, 43, 74, 25, 11, 89]
>>> query(e).first()
10

Retrieve the first element of a sequence divisible by seven:

>>> e = [10, 34, 56, 43, 74, 25, 11, 89]
>>> query(e).first(lambda x: x % 7 == 0)
56

	
first_or_default(default, predicate=None)

	The first element (optionally satisfying a predicate) or a default.

If the predicate is omitted or is None this query returns the first
element in the sequence; otherwise, it returns the first element in
the sequence for which the predicate evaluates to True. If there is no
such element the value of the default argument is returned.

Note

This method uses immediate execution.

	Parameters:	
	default – The value which will be returned if either the sequence is
empty or there are no elements matching the predicate.

	predicate – An optional unary predicate function, the only argument
to which is the element. The return value should be True for
matching elements, otherwise False. If the predicate is
omitted or None the first element of the source sequence will
be returned.

	Returns:	The first element of the sequence if predicate is None, otherwise
the first element for which the predicate returns True. If there is
no such element, the default argument is returned.

	Raises:	
	ValueError - If the Queryable is closed.

	TypeError - If the predicate is not callable.

Examples

Retrieve the first element of a sequence:

>>> e = [10, 34, 56, 43, 74, 25, 11, 89]
>>> query(e).first_or_default(14)
10

Return the default when called on an empty sequence:

>>> f = []
>>> query(f).first_or_default(17)
17

Retrieve the first element of a sequence divisible by eight:

>>> e = [10, 34, 56, 43, 74, 25, 11, 89]
>>> query(e).first_or_default(10, lambda x: x % 8 == 0)
56

	
group_by(key_selector=identity, element_selector=identity, result_selector=lambda key, grouping: grouping)

	Groups the elements according to the value of a key extracted by a
selector function.

Note

This method has different behaviour to itertools.groupby in the
Python standard library because it aggregates all items with the
same key, rather than returning groups of consecutive items of the
same key.

Note

This method uses deferred execution, but consumption of a single
result will lead to evaluation of the whole source sequence.

	Parameters:	
	key_selector – An optional unary function used to extract a key from
each element in the source sequence. The default is the
identity function.

	element_selector – A optional unary function to map elements in the
source sequence to elements in a resulting Grouping. The
default is the identity function.

	result_selector – An optional binary function to create a result
from each group. The first positional argument is the key
identifying the group. The second argument is a Grouping object
containing the members of the group. The default is a function
which simply returns the Grouping.

	Returns:	A Queryable sequence of elements of the where each element
represents a group. If the default result_selector is relied upon
this is a Grouping object.

	Raises:	
	ValueError - If the Queryable is closed().

	TypeError - If key_selector is not callable.

	TypeError - If element_selector is not callable.

	TypeError - If result_selector is not callable.

Examples

Group numbers by the remainder when dividing them by five:

>>> numbers = [10, 34, 56, 43, 74, 25, 11, 89]
>>> groups = query(e).group_by(lambda x: x % 5).to_list()
>>> groups
[Grouping(key=0), Grouping(key=4), Grouping(key=1),
 Grouping(key=3)]
>>> groups[0].key
0
>>> groups[0].to_list()
[10, 25]
>>> groups[1].key
1
>>> groups[1].to_list()
[34, 74, 89]

Group people by their nationality of the first name, and place only
the person’s name in the grouped result:

>>> people = [dict(name="Joe Bloggs", nationality="British"),
... dict(name="Ola Nordmann", nationality="Norwegian"),
... dict(name="Harry Holland", nationality="Dutch"),
... dict(name="Kari Nordmann", nationality="Norwegian"),
... dict(name="Jan Kowalski", nationality="Polish"),
... dict(name="Hans Schweizer", nationality="Swiss"),
... dict(name="Tom Cobbleigh", nationality="British"),
... dict(name="Tommy Atkins", nationality="British")]
>>> groups = query(people).group_by(lambda p: p['nationality'],
 lambda p: p['name']).to_list()
>>> groups
[Grouping(key='British'), Grouping(key='Norwegian'),
 Grouping(key='Dutch'), Grouping(key='Polish'),
 Grouping(key='Swiss')]
>>> groups[0].to_list()
['Joe Bloggs', 'Tom Cobbleigh', 'Tommy Atkins']
>>> groups[1].to_list()
['Ola Nordmann', 'Kari Nordmann']

Determine the number of people in each national group by creating
a tuple for each group where the first element is the nationality and
the second element is the number of people of that nationality:

>>> people = [dict(name="Joe Bloggs", nationality="British"),
... dict(name="Ola Nordmann", nationality="Norwegian"),
... dict(name="Harry Holland", nationality="Dutch"),
... dict(name="Kari Nordmann", nationality="Norwegian"),
... dict(name="Jan Kowalski", nationality="Polish"),
... dict(name="Hans Schweizer", nationality="Swiss"),
... dict(name="Tom Cobbleigh", nationality="British"),
... dict(name="Tommy Atkins", nationality="British")]
>>> groups = query(people).group_by(lambda p: p['nationality'],
... result_selector=lambda key, group: (key, len(group))).to_list()
>>> groups
[('British', 3), ('Norwegian', 2), ('Dutch', 1), ('Polish', 1),
 ('Swiss', 1)]

	
group_join(inner_iterable, outer_key_selector=identity, inner_key_selector=identity, result_selector=lambda outer, grouping: grouping)

	Match elements of two sequences using keys and group the results.

The group_join() query produces a hierarchical result, with all of the
inner elements in the result grouped against the matching outer
element.

The order of elements from outer is maintained. For each of these the
order of elements from inner is also preserved.

Note

This method uses deferred execution.

	Parameters:	
	inner_iterable – The sequence to join with the outer sequence.

	outer_key_selector – An optional unary function to extract keys from
elements of the outer (source) sequence. The first positional
argument of the function should accept outer elements and the
result value should be the key. If omitted, the identity
function is used.

	inner_key_selector – An optional unary function to extract keys
from elements of the inner_iterable. The first positional
argument of the function should accept outer elements and the
result value should be the key. If omitted, the identity
function is used.

	result_selector – An optional binary function to create a result
element from an outer element and the Grouping of matching
inner elements. The first positional argument is the outer
elements and the second in the Grouping of inner elements
which match the outer element according to the key selectors
used. If omitted, the result elements will be the Groupings
directly.

	Returns:	A Queryable over a sequence with one element for each group in the
result as returned by the result_selector. If the default result
selector is used, the result is a sequence of Grouping objects.

	Raises:	
	ValueError - If the Queryable has been closed.

	TypeError - If the inner_iterable is not in fact iterable.

	TypeError - If the outer_key_selector is not callable.

	TypeError - If the inner_key_selector is not callable.

	TypeError - If the result_selector is not callable.

Example

Correlate players with soccer teams using the team name. Group
the players within those teams such that each element of the
result sequence contains full information about a team and a
collection of players belonging to that team:

>>> players = [dict(name="Ferdinand", team="Manchester United"),
... dict(name="Cole", team="Chelsea", fee=5),
... dict(name="Crouch", team="Tottenham Hotspur"),
... dict(name="Downing", team="Aston Villa"),
... dict(name="Lampard", team="Chelsea", fee=11),
... dict(name="Rooney", team="Manchester United"),
... dict(name="Scholes", team="Manchester United", fee=None)]
>>> teams = [dict(name="Manchester United", ground="Old Trafford"),
... dict(name="Chelsea", ground="Stamford Bridge"),
... dict(name="Tottenham Hotspur", ground="White Hart Lane"),
... dict(name="Aston Villa", ground="Villa Park")]
>>> q = query(teams).group_join(players, lambda team: team['name'],
... lambda player: player['team'],
... lambda team, grouping: dict(team=team['name'],
... ground=team['ground'],
... players=grouping)).to_list()
>>> q
[{'players': Grouping(key='Manchester United'), 'ground': 'Old Trafford', 'team': 'Manchester United'},
 {'players': Grouping(key='Chelsea'), 'ground': 'Stamford Bridge', 'team': 'Chelsea'},
 {'players': Grouping(key='Tottenham Hotspur'), 'ground': 'White Hart Lane', 'team': 'Tottenham Hotspur'},
 {'players': Grouping(key='Aston Villa'), 'ground': 'Villa Park', 'team': 'Aston Villa'}]
>>> q[0]['players'].to_list()
[{'name': 'Ferdinand', 'team': 'Manchester United'},
 {'name': 'Rooney', 'team': 'Manchester United'},
 {'name': 'Scholes', 'team': 'Manchester United'}]

	
intersect(second_iterable, selector=identity)

	Returns those elements which are both in the source sequence and in
the second_iterable.

Note

This method uses deferred execution.

	Parameters:	
	second_iterable – Elements are returned if they are also in the
sequence.

	selector – An optional single argument function which is used to
project the elements in the source and second_iterables prior
to comparing them. If omitted the identity function will be
used.

	Returns:	A sequence containing all elements in the source sequence which
are also members of the second sequence.

	Raises:	
	ValueError - If the Queryable has been closed.

	TypeError - If the second_iterable is not in fact iterable.

	TypeError - If the selector is not callable.

Examples

Find all the numbers common to both lists a and b:

>>> a = [1, 6, 4, 2, 6, 7, 3, 1]
>>> b = [6, 2, 1, 9, 2, 5]
>>> query(a).intersect(b).to_list()
[1, 6, 2]

Take those strings from the list a which also occur in list b
when compared in a case-insensitive way:

>>> a = ["Apple", "Pear", "Banana", "Orange", "Strawberry"]
>>> b = ["PEAR", "ORANGE", "BANANA", "RASPBERRY", "BLUEBERRY"]
>>> query(a).intersect(b, lambda s: s.lower()).to_list()
['Pear', 'Banana', 'Orange']

	
join(inner_iterable, outer_key_selector=identity, inner_key_selector=identity, result_selector=lambda outer, inner: (outer, inner))

	Perform an inner join with a second sequence using selected keys.

The order of elements from outer is maintained. For each of these the
order of elements from inner is also preserved.

Note

This method uses deferred execution.

	Parameters:	
	inner_iterable – The sequence to join with the outer sequence.

	outer_key_selector – An optional unary function to extract keys from
elements of the outer (source) sequence. The first positional
argument of the function should accept outer elements and the
result value should be the key. If omitted, the identity
function is used.

	inner_key_selector – An optional unary function to extract keys
from elements of the inner_iterable. The first positional
argument of the function should accept outer elements and the
result value should be the key. If omitted, the identity
function is used.

	result_selector – An optional binary function to create a result
element from two matching elements of the outer and inner. If
omitted the result elements will be a 2-tuple pair of the
matching outer and inner elements.

	Returns:	A Queryable whose elements are the result of performing an inner-
join on two sequences.

	Raises:	
	ValueError - If the Queryable has been closed.

	TypeError - If the inner_iterable is not in fact iterable.

	TypeError - If the outer_key_selector is not callable.

	TypeError - If the inner_key_selector is not callable.

	TypeError - If the result_selector is not callable.

Examples

Correlate pets with their owners, producing pairs of pet and owner
date for each result:

>>> people = ['Minnie', 'Dennis', 'Roger', 'Beryl']
>>> pets = [dict(name='Chester', owner='Minnie'),
... dict(name='Gnasher', owner='Dennis'),
... dict(name='Dodge', owner='Roger'),
... dict(name='Pearl', owner='Beryl')]
>>> query(pets).join(people, lambda pet: pet['owner']).to_list()
[({'owner': 'Minnie', 'name': 'Chester'}, 'Minnie'),
 ({'owner': 'Dennis', 'name': 'Gnasher'}, 'Dennis'),
 ({'owner': 'Roger', 'name': 'Dodge'}, 'Roger'),
 ({'owner': 'Beryl', 'name': 'Pearl'}, 'Beryl')]

or correlate owners with pets, producing more refined results:

>>> query(people).join(pets, inner_key_selector=lambda pet: pet['owner'],
... result_selector=lambda person, pet: pet['name'] + " is owned by " + person) \
... .to_list()
['Chester is owned by Minnie',
 'Gnasher is owned by Dennis',
 'Dodge is owned by Roger',
 'Pearl is owned by Beryl']

	
last(predicate=None)

	The last element in a sequence (optionally satisfying a predicate).

If the predicate is omitted or is None this query returns the last
element in the sequence; otherwise, it returns the last element in
the sequence for which the predicate evaluates to True. Exceptions are
raised if there is no such element.

Note

This method uses immediate execution.

	Parameters:	predicate – An optional unary predicate function, the only argument
to which is the element. The return value should be True for
matching elements, otherwise False. If the predicate is
omitted or None the last element of the source sequence will
be returned.

	Returns:	The last element of the sequence if predicate is None, otherwise
the last element for which the predicate returns True.

	Raises:	
	ValueError - If the Queryable is closed.

	ValueError - If the source sequence is empty.

	ValueError - If there are no elements matching the predicate.

	TypeError - If the predicate is not callable.

Examples

Return the last number in this sequence:

>>> numbers = [1, 45, 23, 34]
>>> query(numbers).last()
34

Return the last number under 30 in this sequence:

>>> numbers = [1, 45, 23, 34]
>>> query(numbers).last(lambda x: x < 30)
23

	
last_or_default(default, predicate=None)

	The last element (optionally satisfying a predicate) or a default.

If the predicate is omitted or is None this query returns the last
element in the sequence; otherwise, it returns the last element in
the sequence for which the predicate evaluates to True. If there is no
such element the value of the default argument is returned.

Note

This method uses immediate execution.

	Parameters:	
	default – The value which will be returned if either the sequence is
empty or there are no elements matching the predicate.

	predicate – An optional unary predicate function, the only argument
to which is the element. The return value should be True for
matching elements, otherwise False. If the predicate is
omitted or None the last element of the source sequence will
be returned.

	Returns:	The last element of the sequence if predicate is None, otherwise
the last element for which the predicate returns True. If there is
no such element, the default argument is returned.

	Raises:	
	ValueError - If the Queryable is closed.

	TypeError - If the predicate is not callable.

Examples

Return the last number in this sequence:

>>> numbers = [1, 45, 23, 34]
>>> query(numbers).last()
34

Return the last number under 30 in this sequence:

>>> numbers = [1, 45, 23, 34]
>>> query(numbers).last(lambda x: x < 30)
23

Trigger return of the default using a sequence with no values which
satisfy the predicate:

>>> numbers = [1, 45, 23, 34]
>>> query(numbers).last_or_default(100, lambda x: x > 50)
100

Trigger return of the default using an empty sequence:

>>> numbers = []
>>> query(numbers).last_or_default(37)
37

	
log(logger=None, label=None, eager=False)

	Log query result consumption details to a logger.

	Parameters:	
	logger – Any object which supports a debug() method which accepts a
str, such as a Python standard library logger object from the
logging module. If logger is not provided or is None, this
method has no logging side effects.

	label – An optional label which will be inserted into each line of
logging output produced by this particular use of log

	eager – An optional boolean which controls how the query result will
be consumed. If True, the sequence will be consumed and logged
in its entirety. If False (the default) the sequence will be
evaluated and logged lazily as it consumed.

Warning

Use of eager=True requires use of sufficient memory to
hold the entire sequence which is obviously not possible with
infinite sequences. Use with care!

	Returns:	A queryable over the unaltered source sequence.

	Raises:	
	AttributeError - If logger does not support a debug() method.

	ValueError - If the Queryable has been closed.

Examples

These examples log to a console logger called clog which can be
created using the following incantation:

>>> import logging
>>> clog = logging.getLogger("clog")
>>> clog.setLevel(logging.DEBUG)
>>> clog.addHandler(logging.StreamHandler())

By default, log() uses deferred execution, so unless the output
of log() is consumed nothing at all will be logged. In this
example nothing is logged to the console because the result of
log() is never consumed:

>>> numbers = [1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]
>>> query(numbers).log(clog)

We can easily consume the output of log() by chaining a call to
to_list(). Use the default arguments for log():

>>> numbers = [1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]
>>> query(numbers).log(clog).to_list()
Queryable([1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]) : BEGIN (DEFERRED)
Queryable([1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]) : [0] yields 1
Queryable([1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]) : [1] yields 5
Queryable([1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]) : [2] yields 9
Queryable([1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]) : [3] yields 34
Queryable([1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]) : [4] yields 2
Queryable([1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]) : [5] yields 9
Queryable([1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]) : [6] yields 12
Queryable([1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]) : [7] yields 7
Queryable([1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]) : [8] yields 13
Queryable([1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]) : [9] yields 48
Queryable([1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]) : [10] yields 34
Queryable([1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]) : [11] yields 23
Queryable([1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]) : [12] yields 34
Queryable([1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]) : [13] yields 9
Queryable([1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]) : [14] yields 47
Queryable([1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]) : END (DEFERRED)
[1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]

The beginning and end of the sequence are delimited by BEGIN and
END markers which also indicated whether logging is DEFERRED
so items are logged only as they are requested or EAGER where the
whole sequence will be returns immediately.

From left to right the log output shows:

	A label, which defaults to the repr() of the Queryable
instance being logged.

	In square brackets the zero-based index of the element being
logged.

	yields <element> showing the element value

Specify a label a more concise label to log():

>>> numbers = [1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]
>>> query(numbers).log(clog, label='query()').to_list()
query() : BEGIN (DEFERRED)
query() : [0] yields 1
query() : [1] yields 5
query() : [2] yields 9
query() : [3] yields 34
query() : [4] yields 2
query() : [5] yields 9
query() : [6] yields 12
query() : [7] yields 7
query() : [8] yields 13
query() : [9] yields 48
query() : [10] yields 34
query() : [11] yields 23
query() : [12] yields 34
query() : [13] yields 9
query() : [14] yields 47
query() : END (DEFERRED)
[1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]

We can show how the default deferred logging produces only required
elements by only consuming the first three elements:

>>> numbers = [1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]
>>> query(numbers).log(clog, label='query()').take(3).to_list()
query() : BEGIN (DEFERRED)
query() : [0] yields 1
query() : [1] yields 5
query() : [2] yields 9
[1, 5, 9]

However, by setting the eager argument to be True, we can force
logging of the whole sequence immediately:

>>> numbers = [1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]
>>> query(numbers).log(clog, label='query()', eager=True).take(3).to_list()
query() : BEGIN (EAGER)
query() : [0] = 1
query() : [1] = 5
query() : [2] = 9
query() : [3] = 34
query() : [4] = 2
query() : [5] = 9
query() : [6] = 12
query() : [7] = 7
query() : [8] = 13
query() : [9] = 48
query() : [10] = 34
query() : [11] = 23
query() : [12] = 34
query() : [13] = 9
query() : [14] = 47
query() : END (EAGER)
[1, 5, 9]

Note that in these cases the output has a different format and that
use of eager logging in no way affects the query result.

If logger is None (or omitted), then logging is disabled
completely:

>>> query(numbers).log(logger=None, label='query()').take(3).to_list()
[1, 5, 9]

Finally, see that log() can be used at multiple points within a
query expression:

>>> numbers = [1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]
>>> query(numbers).log(clog, label='query(numbers)') \
... .select(lambda x: x * x).log(clog, label='squared') \
... .where(lambda x: x > 1000).log(clog, label="over 1000") \
... .take(3).log(clog, label="take 3") \
... .to_list()
take 3 : BEGIN (DEFERRED)
over 1000 : BEGIN (DEFERRED)
squared : BEGIN (DEFERRED)
query(numbers) : BEGIN (DEFERRED)
query(numbers) : [0] yields 1
squared : [0] yields 1
query(numbers) : [1] yields 5
squared : [1] yields 25
query(numbers) : [2] yields 9
squared : [2] yields 81
query(numbers) : [3] yields 34
squared : [3] yields 1156
over 1000 : [0] yields 1156
take 3 : [0] yields 1156
query(numbers) : [4] yields 2
squared : [4] yields 4
query(numbers) : [5] yields 9
squared : [5] yields 81
query(numbers) : [6] yields 12
squared : [6] yields 144
query(numbers) : [7] yields 7
squared : [7] yields 49
query(numbers) : [8] yields 13
squared : [8] yields 169
query(numbers) : [9] yields 48
squared : [9] yields 2304
over 1000 : [1] yields 2304
take 3 : [1] yields 2304
query(numbers) : [10] yields 34
squared : [10] yields 1156
over 1000 : [2] yields 1156
take 3 : [2] yields 1156
take 3 : END (DEFERRED)
[1156, 2304, 1156]

	
max(selector=identity)

	Return the maximum value in a sequence.

All of the source sequence will be consumed.

Note

This method uses immediate execution.

	Parameters:	selector – An optional single argument function which will be used
to project the elements of the sequence. If omitted, the
identity function is used.

	Returns:	The maximum value of the projected sequence.

	Raises:	
	ValueError - If the Queryable has been closed.

	ValueError - If the sequence is empty.

Examples

Return the maximum value from a list of numbers:

>>> numbers = [1, -45, 23, -34, 19]
>>> query(numbers).max()
23

Return the maximum absolute value from a list of numbers:

>>> numbers = [1, -45, 23, -34, 19]
>>> query(numbers).max(abs)
45

	
min(selector=identity)

	Return the minimum value in a sequence.

All of the source sequence will be consumed.

Note

This method uses immediate execution.

	Parameters:	selector – An optional single argument function which will be used
to project the elements of the sequence. If omitted, the
identity function is used.

	Returns:	The minimum value of the projected sequence.

	Raises:	
	ValueError - If the Queryable has been closed.

	ValueError - If the sequence is empty.

Examples

Return the minimum value from a list of numbers:

>>> numbers = [1, -45, 23, -34, 19]
>>> query(numbers).max()
-45

Return the minimum absolute value from a list of numbers:

>>> numbers = [1, -45, 23, -34, 19]
>>> query(numbers).max(abs)
1

	
of_type(classinfo)

	Filters elements according to whether they are of a certain type.

Note

This method uses deferred execution.

	Parameters:	classinfo – If classinfo is neither a class object nor a type object
it may be a tuple of class or type objects, or may recursively
contain other such tuples (other sequence types are not
accepted).

	Returns:	A Queryable over those elements of the source sequence for which
the predicate is True.

	Raises:	
	ValueError - If the Queryable is closed.

	
	TypeError - If classinfo is not a class, type, or tuple of classes,

	types, and such tuples.

Examples

Return all of the strings from a list:

>>> numbers = ["one", 2.0, "three", "four", 5, 6.0, "seven", 8, "nine", "ten"]
>>> query(numbers).of_type(int).to_list()
[5, 8]

Return all the integers and floats from a list:

>>> numbers = ["one", 2.0, "three", "four", 5, 6.0, "seven", 8, "nine", "ten"]
>>> query(numbers).of_type((int, float)).to_list()
[2.0, 5, 6.0, 8]

	
order_by(key_selector=identity)

	Sorts by a key in ascending order.

Introduces a primary sorting order to the sequence. Additional sort
criteria should be specified by subsequent calls to then_by() and
then_by_descending(). Calling order_by() or order_by_descending() on
the results of a call to order_by() will introduce a new primary
ordering which will override any already established ordering.

This method performs a stable sort. The order of two elements with the
same key will be preserved.

Note

This method uses deferred execution.

	Parameters:	key_selector – A unary function which extracts a key from each
element using which the result will be ordered.

	Returns:	An OrderedQueryable over the sorted elements.

	Raises:	
	ValueError - If the Queryable is closed.

	TypeError - If the key_selector is not callable.

Examples

Sort a list of numbers in ascending order by their own value:

>>> numbers = [1, -45, 23, -34, 19, 78, -23, 12, 98, -14]
>>> query(numbers).order_by().to_list()
[-45, -34, -23, -14, 1, 12, 19, 23, 78, 98]

Sort a list of numbers in ascending order by their absolute value:

>>> numbers = [1, -45, 23, -34, 19, 78, -23, 12, 98, -14]
>>> query(numbers).order_by(abs).to_list()
[1, 12, -14, 19, 23, -23, -34, -45, 78, 98]

See that the relative order of the two elements which compare equal
(23 and -23 in the list shown) are preserved; the sort is stable.

	
order_by_descending(key_selector=identity)

	Sorts by a key in descending order.

Introduces a primary sorting order to the sequence. Additional sort
criteria should be specified by subsequent calls to then_by() and
then_by_descending(). Calling order_by() or order_by_descending() on
the results of a call to order_by() will introduce a new primary
ordering which will override any already established ordering.

This method performs a stable sort. The order of two elements with the
same key will be preserved.

Note

This method uses deferred execution.

	Parameters:	key_selector – A unary function which extracts a key from each
element using which the result will be ordered.

	Returns:	An OrderedQueryable over the sorted elements.

	Raises:	
	ValueError - If the Queryable is closed.

	TypeError - If the key_selector is not callable.

Examples

Sort a list of numbers in ascending order by their own value:

>>> numbers = [1, -45, 23, -34, 19, 78, -23, 12, 98, -14]
>>> query(numbers).order_by_descending().to_list()
[98, 78, 23, 19, 12, 1, -14, -23, -34, -45]

Sort a list of numbers in ascending order by their absolute value:

>>> numbers = [1, -45, 23, -34, 19, 78, -23, 12, 98, -14]
>>> query(numbers).order_by_descending(abs).to_list()
[98, 78, -45, -34, 23, -23, 19, -14, 12, 1]

See that the relative order of the two elements which compare equal
(23 and -23 in the list shown) are preserved; the sort is stable.

	
select(selector)

	Transforms each element of a sequence into a new form.

Each element of the source is transformed through a selector function
to produce a corresponding element in teh result sequence.

If the selector is identity the method will return self.

Note

This method uses deferred execution.

	Parameters:	selector – A unary function mapping a value in the source sequence
to the corresponding value in the generated generated sequence.
The single positional argument to the selector function is the
element value. The return value of the selector function
should be the corresponding element of the result sequence.

	Returns:	A Queryable over generated sequence whose elements are the result
of invoking the selector function on each element of the source
sequence.

	Raises:	
	ValueError - If this Queryable has been closed.

	TypeError - If selector is not callable.

Examples

Select the scores from a collection of student records:

>>> students = [dict(name="Joe Bloggs", score=54),
... dict(name="Ola Nordmann", score=61),
... dict(name="John Doe", score=51),
... dict(name="Tom Cobleigh", score=71)]
>>> query(students).select(lambda student: student['score']).to_list()
[54, 61, 51, 71]

Transform a sequence of numbers into it square roots:

>>> import math
>>> numbers = [1, 45, 23, 34, 19, 78, 23, 12, 98, 14]
>>> query(numbers).select(math.sqrt).to_list()
[1.0, 6.708203932499369, 4.795831523312719, 5.830951894845301,
 4.358898943540674, 8.831760866327848, 4.795831523312719,
 3.4641016151377544, 9.899494936611665, 3.7416573867739413]

	
select_many(collection_selector=identity, result_selector=identity)

	Projects each element of a sequence to an intermediate new sequence,
flattens the resulting sequences into one sequence and optionally
transforms the flattened sequence using a selector function.

Note

This method uses deferred execution.

	Parameters:	
	collection_selector – A unary function mapping each element of the
source iterable into an intermediate sequence. The single
argument of the collection_selector is the value of an element
from the source sequence. The return value should be an
iterable derived from that element value. The default
collection_selector, which is the identity function, assumes
that each element of the source sequence is itself iterable.

	result_selector – An optional unary function mapping the elements in
the flattened intermediate sequence to corresponding elements
of the result sequence. The single argument of the
result_selector is the value of an element from the flattened
intermediate sequence. The return value should be the
corresponding value in the result sequence. The default
result_selector is the identity function.

	Returns:	A Queryable over a generated sequence whose elements are the result
of applying the one-to-many collection_selector to each element of
the source sequence, concatenating the results into an intermediate
sequence, and then mapping each of those elements through the
result_selector into the result sequence.

	Raises:	
	ValueError - If this Queryable has been closed.

	
	TypeError - If either collection_selector or result_selector are not

	callable.

Examples

Select all the words from three sentences by splitting each sentence
into its component words:

>>> a = "The quick brown fox jumped over the lazy dog"
>>> b = "Pack my box with five dozen liquor jugs"
>>> c = "Jackdaws love my big sphinx of quartz"
>>> sentences = [a, b, c]
>>> query(sentences).select_many(lambda sentence: sentence.split()).to_list()
['The', 'quick', 'brown', 'fox', 'jumped', 'over', 'the', 'lazy',
 'dog', 'Pack', 'my', 'box', 'with', 'five', 'dozen', 'liquor',
 'jugs', 'Jackdaws', 'love', 'my', 'big', 'sphinx', 'of', 'quartz']

Select all the words from three sentences and return a list of the
length of each word:

>>> a = "The quick brown fox jumped over the lazy dog"
>>> b = "Pack my box with five dozen liquor jugs"
>>> c = "Jackdaws love my big sphinx of quartz"
>>> sentences = [a, b, c]
>>> query(sentences).select_many(lambda sentence: sentence.split(), len).to_list()
[3, 5, 5, 3, 6, 4, 3, 4, 3, 4, 2, 3, 4, 4, 5, 6, 4, 8, 4, 2, 3, 6,
 2, 6]

	
select_many_with_correspondence(collection_selector=identity, result_selector=lambda source_element, collection_element: (source_element, collection_element)))

	Projects each element of a sequence to an intermediate new sequence,
and flattens the resulting sequence, into one sequence and uses a
selector function to incorporate the corresponding source for each item
in the result sequence.

Note

This method uses deferred execution.

	Parameters:	
	collection_selector – A unary function mapping each element of the
source iterable into an intermediate sequence. The single
argument of the collection_selector is the value of an element
from the source sequence. The return value should be an
iterable derived from that element value. The default
collection_selector, which is the identity function, assumes
that each element of the source sequence is itself iterable.

	result_selector – An optional binary function mapping the elements in the
flattened intermediate sequence together with their
corresponding source elements to elements of the result
sequence. The two positional arguments of the result_selector
are, first the source element corresponding to an element from
the intermediate sequence, and second the actual element from
the intermediate sequence. The return value should be the
corresponding value in the result sequence. If no
result_selector function is provided, the elements of the
result sequence are KeyedElement namedtuples.

	Returns:	A Queryable over a generated sequence whose elements are the result
of applying the one-to-many collection_selector to each element of
the source sequence, concatenating the results into an intermediate
sequence, and then mapping each of those elements through the
result_selector which incorporates the corresponding source element
into the result sequence.

	Raises:	
	ValueError - If this Queryable has been closed.

	TypeError - If projector or selector are not callable.

Example

Incorporate each album track with its performing artist into a
descriptive string:

>>> albums = [dict(name="Hotel California", artist="The Eagles",
... tracks=["Hotel California",
... "New Kid in Town",
... "Life in the Fast Lane",
... "Wasted Time"]),
... dict(name="Revolver", artist="The Beatles",
... tracks=["Taxman",
... "Eleanor Rigby",
... "Yellow Submarine",
... "Doctor Robert"]),
... dict(name="Thriller", artist="Michael Jackson",
... tracks=["Thriller",
... "Beat It",
... "Billie Jean",
... "The Girl Is Mine"])]
>>> query(albums).select_many_with_correspondence(lambda album: album['tracks'],
... lambda album, track: track + " by " + album['artist']).to_list()
['Hotel California by The Eagles', 'New Kid in Town by The Eagles',
 'Life in the Fast Lane by The Eagles', 'Wasted Time by The Eagles',
 'Taxman by The Beatles', 'Eleanor Rigby by The Beatles',
 'Yellow Submarine by The Beatles', 'Doctor Robert by The Beatles',
 'Thriller by Michael Jackson', 'Beat It by Michael Jackson',
 'Billie Jean by Michael Jackson',
 'The Girl Is Mine by Michael Jackson']

	
select_many_with_index(collection_selector=IndexedElement, result_selector=lambda source_element, collection_element: collection_element)

	Projects each element of a sequence to an intermediate new sequence,
incorporating the index of the element, flattens the resulting sequence
into one sequence and optionally transforms the flattened sequence
using a selector function.

Note

This method uses deferred execution.

	Parameters:	
	collection_selector – A binary function mapping each element of the
source sequence into an intermediate sequence, by incorporating
its index in the source sequence. The two positional arguments
to the function are the zero-based index of the source element
and the value of the element. The result of the function
should be an iterable derived from the index and element value.
If no collection_selector is provided, the elements of the
intermediate sequence will consist of tuples of (index,
element) from the source sequence.

	result_selector – An optional binary function mapping the elements in the
flattened intermediate sequence together with their
corresponding source elements to elements of the result
sequence. The two positional arguments of the result_selector
are, first the source element corresponding to an element from
the intermediate sequence, and second the actual element from
the intermediate sequence. The return value should be the
corresponding value in the result sequence. If no
result_selector function is provided, the elements of the
flattened intermediate sequence are returned untransformed.

	Returns:	A Queryable over a generated sequence whose elements are the result
of applying the one-to-many collection_selector to each element of
the source sequence which incorporates both the index and value of
the source element, concatenating the results into an intermediate
sequence, and then mapping each of those elements through the
result_selector into the result sequence.

	Raises:	
	ValueError - If this Queryable has been closed.

	TypeError - If projector [and selector] are not callable.

Example

Incorporate the index of each album along with the track and artist
for a digital jukebox. A generator expression is used to combine the
index with the track name when generating the intermediate sequences
from each album which will be concatenated into the final result:

>>> albums = [dict(name="Hotel California", artist="The Eagles",
... tracks=["Hotel California",
... "New Kid in Town",
... "Life in the Fast Lane",
... "Wasted Time"]),
... dict(name="Revolver", artist="The Beatles",
... tracks=["Taxman",
... "Eleanor Rigby",
... "Yellow Submarine",
... "Doctor Robert"]),
... dict(name="Thriller", artist="Michael Jackson",
... tracks=["Thriller",
... "Beat It",
... "Billie Jean",
... "The Girl Is Mine"])]
>>> query(albums).select_many_with_index(lambda index, album: (str(index) + ' - ' + track for track in album['tracks'])).to_list()
['0 - Hotel California', '0 - New Kid in Town',
 '0 - Life in the Fast Lane', '0 - Wasted Time', '1 - Taxman',
 '1 - Eleanor Rigby', '1 - Yellow Submarine', '1 - Doctor Robert',
 '2 - Thriller', '2 - Beat It', '2 - Billie Jean',
 '2 - The Girl Is Mine']

Incorporate the index of each album along with the track and artist
for a digital jukebox. A generator expression defining the
collection_selector is used to combine the index with the track name
when generating the intermediate sequences from each album which will
be concatenated into the final result:

>>> albums = [dict(name="Hotel California", artist="The Eagles",
... tracks=["Hotel California",
... "New Kid in Town",
... "Life in the Fast Lane",
... "Wasted Time"]),
... dict(name="Revolver", artist="The Beatles",
... tracks=["Taxman",
... "Eleanor Rigby",
... "Yellow Submarine",
... "Doctor Robert"]),
... dict(name="Thriller", artist="Michael Jackson",
... tracks=["Thriller",
... "Beat It",
... "Billie Jean",
... "The Girl Is Mine"])]
>>> query(albums).select_many_with_index(collection_selector=lambda index, album: (str(index) + ' - ' + track for track in album['tracks']),
... result_selector=lambda album, track: album['name'] + ' - ' + track).to_list()
['Hotel California - 0 - Hotel California',
 'Hotel California - 0 - New Kid in Town',
 'Hotel California - 0 - Life in the Fast Lane',
 'Hotel California - 0 - Wasted Time', 'Revolver - 1 - Taxman',
 'Revolver - 1 - Eleanor Rigby', 'Revolver - 1 - Yellow Submarine',
 'Revolver - 1 - Doctor Robert', 'Thriller - 2 - Thriller',
 'Thriller - 2 - Beat It', 'Thriller - 2 - Billie Jean',
 'Thriller - 2 - The Girl Is Mine']

	
select_with_correspondence(transform, selector=KeyedElement)

	Apply a callable to each element in an input sequence, generating a new
sequence of 2-tuples where the first element is the input value and the
second is the transformed input value.

The generated sequence is lazily evaluated.

Note

This method uses deferred execution.

	Parameters:	
	selector – A unary function mapping a value in the source sequence
to the second argument of the result selector.

	result_selector – A binary callable mapping the of a value in
the source sequence and the transformed value to the
corresponding value in the generated sequence. The two
positional arguments of the selector function are the original
source element and the transformed value. The return value
should be the corresponding value in the result sequence. The
default selector produces a KeyedElement containing the index
and the element giving this function similar behaviour to the
built-in enumerate().

	Returns:	When using the default selector, a Queryable whose elements are
KeyedElements where the first element is from the input sequence
and the second is the result of invoking the transform function on
the first value.

	Raises:	
	ValueError - If this Queryable has been closed.

	TypeError - If transform is not callable.

Examples

Generate a list of KeyedElement items using the default selector:

>>> query(range(10)).select_with_correspondence(lambda x: x%5).to_list()
[KeyedElement(key=0, value=0),
 KeyedElement(key=1, value=1),
 KeyedElement(key=2, value=2),
 KeyedElement(key=3, value=3),
 KeyedElement(key=4, value=4),
 KeyedElement(key=5, value=0),
 KeyedElement(key=6, value=1),
 KeyedElement(key=7, value=2),
 KeyedElement(key=8, value=3),
 KeyedElement(key=9, value=4)]

Square the integers zero to nine, retaining only those elements for which the square is an odd number:

 >>> query(range(10)) \
select_with_correspondence(lambda x: x*x) \
where(lambda y: y.value%2 != 0) \
select(lambda y: y.key) \
to_list()
 ...
[1, 3, 5, 7, 9]

	
select_with_index(selector=IndexedElement)

	Transforms each element of a sequence into a new form, incorporating
the index of the element.

Each element is transformed through a selector function which accepts
the element value and its zero-based index in the source sequence. The
generated sequence is lazily evaluated.

Note

This method uses deferred execution.

	Parameters:	selector – A binary function mapping the index of a value in
the source sequence and the element value itself to the
corresponding value in the generated sequence. The two
positional arguments of the selector function are the zero-
based index of the current element and the value of the current
element. The return value should be the corresponding value in
the result sequence. The default selector produces an IndexedElement
containing the index and the element giving this function
similar behaviour to the built-in enumerate().

	Returns:	A Queryable whose elements are the result of invoking the selector
function on each element of the source sequence

	Raises:	
	ValueError - If this Queryable has been closed.

	TypeError - If selector is not callable.

Examples

Generate a list of IndexedElement items using the default selector. The contents of an IndexedElement
can either be accessed using the named attributes, or through the zero (index) and one (element) indexes:

>>> dark_side_of_the_moon = ['Speak to Me', 'Breathe', 'On the Run',
... 'Time', 'The Great Gig in the Sky', 'Money', 'Us and Them',
... 'Any Colour You Like', 'Brain Damage', 'Eclipse']
>>> query(dark_side_of_the_moon).select_with_index().to_list()
[IndexedElement(index=0, element='Speak to Me'),
 IndexedElement(index=1, element='Breathe'),
 IndexedElement(index=2, element='On the Run'),
 IndexedElement(index=3, element='Time'),
 IndexedElement(index=4, element='The Great Gig in the Sky'),
 IndexedElement(index=5, element='Money'),
 IndexedElement(index=6, element='Us and Them'),
 IndexedElement(index=7, element='Any Colour You Like'),
 IndexedElement(index=8, element='Brain Damage'),
 IndexedElement(index=9, element='Eclipse')]

Generate numbered album tracks using a custom selector:

>>> query(dark_side_of_the_moon).select_with_index(lambda index, track: str(index) + '. ' + track).to_list()
['0. Speak to Me', '1. Breathe', '2. On the Run', '3. Time',
 '4. The Great Gig in the Sky', '5. Money', '6. Us and Them',
 '7. Any Colour You Like', '8. Brain Damage', '9. Eclipse']

	
sequence_equal(second_iterable, equality_comparer=operator.eq)

	Determine whether two sequences are equal by elementwise comparison.

Sequence equality is defined as the two sequences being equal length
and corresponding elements being equal as determined by the equality
comparer.

Note

This method uses immediate execution.

	Parameters:	
	second_iterable – The sequence which will be compared with the
source sequence.

	equality_comparer – An optional binary predicate function which is
used to compare corresponding elements. Should return True if
the elements are equal, otherwise False. The default equality
comparer is operator.eq which calls __eq__ on elements of the
source sequence with the corresponding element of the second
sequence as a parameter.

	Returns:	True if the sequences are equal, otherwise False.

	Raises:	
	ValueError - If the Queryable is closed.

	TypeError - If second_iterable is not in fact iterable.

	TypeError - If equality_comparer is not callable.

Examples

Determine whether lists a and b are equal:

>>> a = [1, 3, 6, 2, 8]
>>> b = [3, 6, 2, 1, 8]
>>> query(a).sequence_equal(b)
False

Determine whether lists a and b and equal when absolute values
are compared:

>>> a = [1, -3, 6, -2, 8]
>>> b = [-1, 3, -6, 2, -8]
>>> query(a).sequence_equal(b, lambda lhs, rhs: abs(lhs) == abs(rhs))
True

	
single(predicate=None)

	The only element (which satisfies a condition).

If the predicate is omitted or is None this query returns the only
element in the sequence; otherwise, it returns the only element in
the sequence for which the predicate evaluates to True. Exceptions are
raised if there is either no such element or more than one such
element.

Note

This method uses immediate execution.

	Parameters:	predicate – An optional unary predicate function, the only argument
to which is the element. The return value should be True for
matching elements, otherwise False. If the predicate is
omitted or None the only element of the source sequence will
be returned.

	Returns:	The only element of the sequence if predicate is None, otherwise
the only element for which the predicate returns True.

	Raises:	
	ValueError - If the Queryable is closed.

	
	ValueError - If, when predicate is None the source sequence contains

	more than one element.

	
	ValueError - If there are no elements matching the predicate or more

	then one element matching the predicate.

	TypeError - If the predicate is not callable.

Examples

Return the only element in the sequence:

>>> a = [5]
>>> query(a).single()
5

Attempt to get the single element from a sequence with multiple
elements:

>>> a = [7, 5, 4]
>>> query(a).single()
ValueError: Sequence for single() contains multiple elements.

Return the only element in a sequence meeting a condition:

>>> a = [7, 5, 4]
>>> query(a).single(lambda x: x > 6)
7

Attempt to get the single element from a sequence which meets a
condition when in fact multiple elements do so:

>>> a = [7, 5, 4]
>>> query(a).single(lambda x: x >= 5)
ValueError: Sequence contains more than one value matching single()
predicate.

	
single_or_default(default, predicate=None)

	The only element (which satisfies a condition) or a default.

If the predicate is omitted or is None this query returns the only
element in the sequence; otherwise, it returns the only element in
the sequence for which the predicate evaluates to True. A default value
is returned if there is no such element. An exception is raised if
there is more than one such element.

Note

This method uses immediate execution.

	Parameters:	
	default – The value which will be returned if either the sequence is
empty or there are no elements matching the predicate.

	predicate – An optional unary predicate function, the only argument
to which is the element. The return value should be True for
matching elements, otherwise False. If the predicate is
omitted or None the only element of the source sequence will
be returned.

	Returns:	The only element of the sequence if predicate is None, otherwise
the only element for which the predicate returns True. If there are
no such elements the default value will returned.

	Raises:	
	ValueError - If the Queryable is closed.

	
	ValueError - If, when predicate is None the source sequence contains

	more than one element.

	
	ValueError - If there is more then one element matching the

	predicate.

	TypeError - If the predicate is not callable.

Examples

Return the only element in the sequence:

>>> a = [5]
>>> query(a).single_or_default(7)
5

Attempt to get the single element from a sequence with multiple
elements:

>>> a = [7, 5, 4]
>>> query(a).single_or_default(9)
ValueError: Sequence for single_or_default() contains multiple
elements

Attempt to get the single element from a sequence with no elements:

>>> a = []
>>> query(a).single_or_default(9)
9

Return the only element in a sequence meeting a condition:

>>> a = [7, 5, 4]
>>> query(a).single_or_default(9, lambda x: x > 6)
7

Attempt to get the single element from a sequence which meets a
condition when in fact multiple elements do so:

>>> a = [7, 5, 4]
>>> query(a).single(lambda x: x >= 5)
ValueError: Sequence contains more than one value matching
single_or_default() predicate.

Attempt to get the single element matching a predicate from a sequence
which contains no matching elements:

>>> a = [7, 5, 4]
>>> query(a).single_or_default(9, lambda x: x > 20)
9

	
skip(count=1)

	Skip the first count contiguous elements of the source sequence.

If the source sequence contains fewer than count elements returns an
empty sequence and does not raise an exception.

Note

This method uses deferred execution.

	Parameters:	count – The number of elements to skip from the beginning of the
sequence. If omitted defaults to one. If count is less than one
the result sequence will be empty.

	Returns:	A Queryable over the elements of source excluding the first count
elements.

	Raises:	ValueError - If the Queryable is closed().

Examples

Skip the first element of a sequence:

>>> a = [7, 5, 4]
>>> query(a).skip().to_list()
[5, 4]

Skip the first two elements of a sequence:

>>> a = [7, 5, 4]
>>> query(a).skip(2).to_list()
[4]

	
skip_while(predicate)

	Omit elements from the start for which a predicate is True.

Note

This method uses deferred execution.

	Parameters:	predicate – A single argument predicate function.

	Returns:	A Queryable over the sequence of elements beginning with the first
element for which the predicate returns False.

	Raises:	
	ValueError - If the Queryable is closed().

	TypeError - If predicate is not callable.

Example

Skip while elements start with the letter ‘a’:

>>> words = ['aardvark', 'antelope', 'ape', 'baboon', 'cat',
... 'anaconda', 'zebra']
>>> query(words).skip_while(lambda s: s.startswith('a')).to_list()
['baboon', 'cat', 'anaconda', 'zebra']

	
sum(selector=identity)

	Return the arithmetic sum of the values in the sequence..

All of the source sequence will be consumed.

Note

This method uses immediate execution.

	Parameters:	selector – An optional single argument function which will be used
to project the elements of the sequence. If omitted, the
identity function is used.

	Returns:	The total value of the projected sequence, or zero for an empty
sequence.

	Raises:	ValueError - If the Queryable has been closed.

Examples

Compute the sum of a sequence of floats:

>>> numbers = [5.6, 3.4, 2.3, 9.3, 1.7, 2.4]
>>> query(numbers).sum()
24.7

Compute the sum of the squares of a sequence of integers:

>>> numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> query(numbers).sum(lambda x: x*x)
385

	
take(count=1)

	Returns a specified number of elements from the start of a sequence.

If the source sequence contains fewer elements than requested only the
available elements will be returned and no exception will be raised.

Note

This method uses deferred execution.

	Parameters:	count – An optional number of elements to take. The default is one.

	Returns:	A Queryable over the first count elements of the source sequence,
or the all elements of elements in the source, whichever is fewer.

	Raises:	ValueError - If the Queryable is closed()

Examples

Take one element from the start of a list:

>>> a = [9, 7, 3, 4, 2]
>>> query(a).take().to_list()
[9]

Take three elements from the start of a list:

>>> query(a).take(3).to_list()
[9, 7, 3]

	
take_while(predicate)

	Returns elements from the start while the predicate is True.

Note

This method uses deferred execution.

	Parameters:	predicate – A function returning True or False with which elements
will be tested.

	Returns:	A Queryable over the elements from the beginning of the source
sequence for which predicate is True.

	Raises:	
	ValueError - If the Queryable is closed()

	TypeError - If the predicate is not callable.

Example

>>> words = ['aardvark', 'antelope', 'ape', 'baboon', 'cat',
... 'anaconda', 'zebra']
>>> query(words).take_while(lambda s: s.startswith('a')).to_list()
['aardvark', 'antelope', 'ape']

	
to_dictionary(key_selector=identity, value_selector=identity)

	Build a dictionary from the source sequence.

	Parameters:	
	key_selector – A unary callable to extract a key from each item.
By default the key is the item itself.

	value_selector – A unary callable to extract a value from each item.
By default the value is the item itself.

Note

This method uses immediate execution.

	Raises:	
	ValueError - If the Queryable is closed.

	TypeError - If key_selector is not callable.

	TypeError - If value_selector is not callable.

Examples

Convert to a dictionary using the default key and value selectors:

>>> animals = ['aardvark', 'baboon', 'cat', 'dot', 'frog', 'giraffe',
... 'horse', 'iguana']
>>> query(animals).to_dictionary()
{'horse': 'horse', 'aardvark': 'aardvark', 'frog': 'frog', 'cat':
 'cat', 'giraffe': 'giraffe', 'baboon': 'baboon', 'dot': 'dot',
 'iguana': 'iguana'}

Convert to a dictionary extracting the first letter as a key:

>>> animals = ['aardvark', 'baboon', 'cat', 'dot', 'frog', 'giraffe',
... 'horse', 'iguana']
>>> query(animals).to_dictionary(key_selector=lambda x: x[0])
{'a': 'aardvark', 'c': 'cat', 'b': 'baboon', 'd': 'dot', 'g':
 'giraffe', 'f': 'frog', 'i': 'iguana', 'h': 'horse'}

Convert to a dictionary extracting the first letter as a key and
converting the value to uppercase:

>>> query(animals).to_dictionary(key_selector=lambda x: x[0],
... value_selector=lambda x: x.upper())
{'a': 'AARDVARK', 'c': 'CAT', 'b': 'BABOON', 'd': 'DOT', 'g':
 'GIRAFFE', 'f': 'FROG', 'i': 'IGUANA', 'h': 'HORSE'}

Attempt to convert a list of fruit to a dictionary using the initial
letter as the key, in the presence of a multiple keys of the same
value:

>>> fruit = ['apple', 'apricot', 'banana', 'cherry']
>>> query(fruit).to_dictionary(lambda f: f[0])
ValueError: Duplicate key value 'a' in sequence during
to_dictionary()

	
to_list()

	Convert the source sequence to a list.

Note

This method uses immediate execution.

Example

Convert from a tuple into a list:

>>> a = (1, 6, 8, 3, 4)
>>> query(a).to_list()
[1, 6, 8, 3, 4]

	
to_lookup()

	Returns a Lookup object, using the provided selector to generate a
key for each item.

Note

This method uses immediate execution.

Examples

Convert to a Lookup using the default key_selector and
value_selector:

>>> countries = ['Austria', 'Bahrain', 'Canada', 'Algeria',
... 'Belgium', 'Croatia', 'Kuwait', 'Angola', 'Greece',
... 'Korea']
>>> query(countries).to_lookup()
Lookup([('Austria', 'Austria'), ('Bahrain', 'Bahrain'), ('Canada',
'Canada'), ('Algeria', 'Algeria'), ('Belgium', 'Belgium'),
('Croatia', 'Croatia'), ('Kuwait', 'Kuwait'), ('Angola', 'Angola'),
('Greece', 'Greece'), ('Korea', 'Korea')])

Convert to a Lookup, using the initial letter of each country name as
the key:

>>> countries = ['Austria', 'Bahrain', 'Canada', 'Algeria',
... 'Belgium', 'Croatia', 'Kuwait', 'Angola', 'Greece',
... 'Korea']
>>> query(countries).to_lookup(key_selector=lambda name: name[0])
Lookup([('A', 'Austria'), ('A', 'Algeria'), ('A', 'Angola'), ('B',
'Bahrain'), ('B', 'Belgium'), ('C', 'Canada'), ('C', 'Croatia'),
('K', 'Kuwait'), ('K', 'Korea'), ('G', 'Greece')])

Convert to a Lookup, using the initial letter of each country name as
the key and the upper case name as the value:

>>> countries = ['Austria', 'Bahrain', 'Canada', 'Algeria',
... 'Belgium', 'Croatia', 'Kuwait', 'Angola', 'Greece',
... 'Korea']
>>> query(countries).to_lookup(key_selector=lambda name: name[0],
... value_selector=lambda name: name.upper())
Lookup([('A', 'AUSTRIA'), ('A', 'ALGERIA'), ('A', 'ANGOLA'), ('B',
'BAHRAIN'), ('B', 'BELGIUM'), ('C', 'CANADA'), ('C', 'CROATIA'),
('K', 'KUWAIT'), ('K', 'KOREA'), ('G', 'GREECE')])

	
to_set()

	Convert the source sequence to a set.

Note

This method uses immediate execution.

	Raises:	
	ValueError - If duplicate keys are in the projected source sequence.

	ValueError - If the Queryable is closed().

Examples

Convert a list to a set:

>>> a = [4, 9, 2, 3, 0, 1]
>>> query(a).to_set()
{0, 1, 2, 3, 4, 9}

Attempt to convert a list containing duplicates to a set:

>>> b = [6, 2, 9, 0, 2, 1, 9]
>>> query(b).to_set()
ValueError: Duplicate item value 2 in sequence during to_set()

	
to_str(separator)

	Build a string from the source sequence.

The elements of the query result will each coerced to a string and then
the resulting strings concatenated to return a single string. This
allows the natural processing of character sequences as strings. An
optional separator which will be inserted between each item may be
specified.

Note

this method uses immediate execution.

	Parameters:	separator – An optional separator which will be coerced to a string
and inserted between each source item in the resulting string.

	Returns:	A single string which is the result of stringifying each element
and concatenating the results into a single string.

	Raises:	
	TypeError - If any element cannot be coerced to a string.

	TypeError - If the separator cannot be coerced to a string.

	ValueError - If the Queryable is closed.

Examples

Convert a sequence of characters into a string:

>>> chars = ['c', 'h', 'a', 'r', 'a', 'c', 't', 'e', 'r', 's']
>>> query(chars).to_str()
'characters'

Concatenate some word fragments into a single string:

>>> syllables = ['pen', 'ta', 'syll', 'ab', 'ic']
>>> query(syllables).to_str()

Coerce some integers to strings and concatenate their digits to form
a single string:

>>> codes = [72, 101, 108, 108, 111, 44, 32, 87, 111, 114, 108, 100, 33]
>>> query(codes).to_str('-')
'72-101-108-108-111-44-32-87-111-114-108-100-33'

Coerce some integers to strings and concatenate their values separated
by hyphens to form a single string:

>>> codes = [72, 101, 108, 108, 111, 44, 32, 87, 111, 114, 108, 100, 33]
>>> query(codes).to_str('-')
'72-101-108-108-111-44-32-87-111-114-108-100-33'

	
to_tuple()

	Convert the source sequence to a tuple.

Note

This method uses immediate execution.

Example

Convert from a list into a tuple:

>>> a = [1, 6, 8, 3, 4]
>>> query(a).to_list()
(1, 6, 8, 3, 4)

	
union(second_iterable, selector=identity)

	Returns those elements which are either in the source sequence or in
the second_iterable, or in both.

Note

This method uses deferred execution.

	Parameters:	
	second_iterable – Elements from this sequence are returns if they
are not also in the source sequence.

	selector – An optional single argument function which is used to
project the elements in the source and second_iterables prior
to comparing them. If omitted the identity function will be
used.

	Returns:	A sequence containing all elements in the source sequence and second
sequence.

	Raises:	
	ValueError - If the Queryable has been closed.

	TypeError - If the second_iterable is not in fact iterable.

	TypeError - If the selector is not callable.

Examples

Create a list of numbers which are in either or both of two lists:

>>> a = [1, 6, 9, 3]
>>> b = [2, 6, 7, 3]
>>> query(a).union(b).to_list()
[1, 6, 9, 3, 2, 7]

Create a list of numbers, based on their absolute values, which are in
either or both of list a or list b, preferentially taking
numbers from list a where the absolute value is present in both:

>>> a = [-1, -4, 2, 6, 7]
>>> b = [3, -4, 2, -6, 9]
>>> query(a).union(b, abs).to_list()
[-1, -4, 2, 6, 7, 3, 9]

	
where(predicate)

	Filters elements according to whether they match a predicate.

Note

This method uses deferred execution.

	Parameters:	predicate – A unary function which is applied to each element in the
source sequence. Source elements for which the predicate
returns True will be present in the result.

	Returns:	A Queryable over those elements of the source sequence for which
the predicate is True.

	Raises:	
	ValueError - If the Queryable is closed.

	TypeError - If the predicate is not callable.

Example

Filter for elements greater than five:

>>> a = [1, 7, 2, 9, 3]
>>> query(a).where(lambda x: x > 5).to_list()
[7, 9]

	
zip(second_iterable, result_selector=lambda x, y: (x, y))

	Elementwise combination of two sequences.

The source sequence and the second iterable are merged element-by-
element using a function to combine them into the single corresponding
element of the result sequence. The length of the result sequence is
equal to the length of the shorter of the two input sequences.

Note

This method uses deferred execution.

	Parameters:	
	second_iterable – The second sequence to be combined with the source
sequence.

	result_selector – An optional binary function for combining
corresponding elements of the source sequences into an
element of the result sequence. The first and second positional
arguments are the elements from the source sequences. The
result should be the result sequence element. If omitted, the
result sequence will consist of 2-tuple pairs of corresponding
elements from the source sequences.

	Returns:	A Queryable over the merged elements.

	Raises:	
	ValueError - If the Queryable is closed.

	TypeError - If result_selector is not callable.

Examples

Combine two sequences using the default result selector which creates
a 2-tuple pair of corresponding elements:

>>> a = [1, 4, 6, 4, 2, 9, 1, 3, 8]
>>> b = [6, 7, 2, 9, 3, 5, 9]
>>> query(a).zip(b).to_list()
[(1, 6), (4, 7), (6, 2), (4, 9), (2, 3), (9, 5), (1, 9)]

Multiply the corresponding elements of two sequences to create a new
sequence equal in length to the shorter of the two:

>>> a = [1, 4, 6, 4, 2, 9, 1, 3, 8]
>>> b = [6, 7, 2, 9, 3, 5, 9]
>>> query(a).zip(b, lambda x, y: x * y).to_list()
[6, 28, 12, 36, 6, 45, 9]

asq.queryables.OrderedQueryable

	
class asq.queryables.OrderedQueryable(iterable, order, func)

	A Queryable representing an ordered iterable.

The sorting implemented by this class is an incremental partial sort so
you don’t pay for sorting results which are never enumerated.

TODO: Document OrderedQueryable

asq.queryables.Lookup

	
class asq.queryables.Lookup(key_value_pairs)

	A multi-valued dictionary.

A Lookup represents a collection of keys, each one of which is mapped to
one or more values. The keys in the Lookup are maintained in the order in
which they were added. The values for each key are also maintained in
order.

Note

Lookup objects are immutable.

All standard query operators may be used on a Lookup. When iterated or
used as a Queryable the elements are returned as a sequence of Grouping
objects.

Example

Lookup, being a subclass of Queryable supports all of the asq query
operators over a collection of Groupings. For example, to select only
those groups containing two or more elements and then flatten those
groups into a single list, use:

 >>> key_value_pairs = [('tree', 'oak'),
 ... ('bird', 'eagle'),
 ... ('bird', 'swallow'),
 ... ('tree', 'birch'),
 ... ('mammal', 'mouse'),
 ... ('tree', 'poplar')]
 ...
 >>> lookup = Lookup(key_value_pairs)
 >>> lookup.where(lambda group: len(group) >= 2).select_many().to_list()
['oak', 'birch', 'poplar', 'eagle', 'swallow']

	
__init__(key_value_pairs)

	Construct a Lookup with a sequence of (key, value) tuples.

	Parameters:	key_value_pairs – An iterable over 2-tuples each containing a key, value pair.

Example

To construct a Lookup from key value pairs:

>>> key_value_pairs = [('tree', 'oak'),
... ('bird', 'eagle'),
... ('bird', 'swallow'),
... ('tree', 'birch'),
... ('mammal', 'mouse'),
... ('tree', 'poplar')]
...
>>> lookup = Lookup(key_value_pairs)

	
__getitem__(key)

	
The sequence corresponding to a given key, or an empty sequence if
there are no values corresponding to that key.

	Parameters:	key – The key of the group to be returned.

	Returns:	The Grouping corresponding to the supplied key.

Examples

To retrieve a Grouping for a given key:

>>> key_value_pairs = [('tree', 'oak'),
... ('bird', 'eagle'),
... ('bird', 'swallow'),
... ('tree', 'birch'),
... ('mammal', 'mouse'),
... ('tree', 'poplar')]
...
>>> lookup = Lookup(key_value_pairs)
>>> lookup['tree']
Grouping(key='tree')

but if no such key exists a Grouping will still be returned, albeit an
empty one:

>>> vehicles = lookup['vehicle']
>>> vehicles
Grouping(key='vehicle')
>>> len(vehicles)
0

	
__len__()

	Support for the len() built-in function.

	Returns:	The number of Groupings (keys) in the lookup.

Example

To determine the number of Groupings in a Lookup:

>>> key_value_pairs = [('tree', 'oak'),
... ('bird', 'eagle'),
... ('bird', 'swallow'),
... ('tree', 'birch'),
... ('mammal', 'mouse'),
... ('tree', 'poplar')]
>>> lookup = Lookup(key_value_pairs)
>>> len(lookup)
3

	
__contains__()

	Support for the ‘in’ membership operator.

	Parameters:	key – The key for which membership will be tested.

	Returns:	True if the Lookup contains a Grouping for the specified key,
otherwise False.

Example

To determine whether a Lookup contains a specific Grouping:

>>> key_value_pairs = [('tree', 'oak'),
... ('bird', 'eagle'),
... ('bird', 'swallow'),
... ('tree', 'birch'),
... ('mammal', 'mouse'),
... ('tree', 'poplar')]
>>> lookup = Lookup(key_value_pairs)
>>> 'tree' in lookup
True
>>> 'vehicle' in lookup
False

	
__repr__()

	Support for the repr() built-in function.

	Returns:	The official string representation of the object.

Example

To produce a string representation of a Lookup:

>>> key_value_pairs = [('tree', 'oak'),
... ('bird', 'eagle'),
... ('bird', 'swallow'),
... ('tree', 'birch'),
... ('mammal', 'mouse'),
... ('tree', 'poplar')]
...
>>> lookup = Lookup(key_value_pairs)
>>> repr(lookup)
"Lookup([('tree', 'oak'), ('tree', 'birch'), ('tree', 'poplar'),
('bird', 'eagle'), ('bird', 'swallow'), ('mammal', 'mouse')])"

	
apply_result_selector(selector)

	Example

Convert each group to a set using a lambda selector and put the
resulting sets in a list:

>>> key_value_pairs = [('tree', 'oak'),
... ('bird', 'eagle'),
... ('bird', 'swallow'),
... ('tree', 'birch'),
... ('mammal', 'mouse'),
...
>>> lookup = Lookup(key_value_pairs)
>>> lookup.apply_result_selector(lambda key, group: set(group)).to_list()
[set(['poplar', 'oak', 'birch']), set(['eagle', 'swallow']),
set(['mouse'])]

	
to_dictionary(key_selector=None, value_selector=None)

	Build a dictionary from the source sequence.

	Parameters:	
	key_selector – A unary callable to extract a key from each item.
By default the key of the Grouping.

	value_selector – A unary callable to extract a value from each item.
By default the value is the list of items from the Grouping.

Note

This method uses immediate execution.

	Raises:	
	ValueError - If the Queryable is closed.

	TypeError - If key_selector is not callable.

	TypeError - If value_selector is not callable.

Example

Convert a Lookup to a dict using the default selectors which produce a
dictionary mapping the lookup keys to lists:

>>> key_value_pairs = [('tree', 'oak'),
... ('bird', 'eagle'),
... ('bird', 'swallow'),
... ('tree', 'birch'),
... ('mammal', 'mouse'),
...
>>> lookup = Lookup(key_value_pairs)
>>> lookup.to_dictionary()
{'mammal': ['mouse'], 'bird': ['eagle', 'swallow'], 'tree': ['oak', 'birch']}

Providing a value_selector to construct the values of the dictionary as a set
rather than the default list:

>>> lookup.to_dictionary(value_selector=set)
{'mammal': {'mouse'}, 'bird': {'swallow', 'eagle'}, 'tree': {'birch', 'oak'}}

asq.queryables.Grouping

	
class asq.queryables.Grouping(key, items)

	A collection of objects which share a common key.

All standard query operators may be used on a Grouping.

Note

It is not intended that clients should directly create Grouping
objects. Instances of this class are retrieved from Lookup objects.

Example

Grouping, being a subclass of Queryable, supports all of the asq
query operators. For example, to produce a list of the group items in
upper case:

>>> g = Grouping("fruit", ["pear", "apple", "orange", "banana"])
>>> g.select(str.upper).to_list()
['PEAR', 'APPLE', 'ORANGE', 'BANANA']

	
__init__(key, iterable)

	Create a Grouping with a given key and a collection of members.

	Parameters:	
	key – The key corresponding to this Grouping

	items – An iterable collection of the members of the group.

Example

Construct a Grouping from a list:

>>> Grouping("fruit", ["pear", "apple", "orange", "banana"])
Grouping(key='fruit')

	
key

	The key common to all elements.

Example

To retrieve the key from a Grouping:

>>> g = Grouping("fruit", ["pear", "apple", "orange", "banana"])
>>> g.key
'fruit'

	
__len__()

	The number of items in the Grouping.

Example

To retrieve the number of items in a Grouping:

>>> g = Grouping("fruit", ["pear", "apple", "orange", "banana"])
>>> len(g)
4

	
__eq__()

	Determine value equality with another grouping.

	Parameters:	rhs – The object on the right-hand-side of the comparison must
support a property called ‘key’ and be iterable.

	Returns:	True if the keys and sequences are equal, otherwise False.

Example

To test whether two Groupings are equal in value:

>>> g1 = Grouping("fruit", ["pear", "apple", "orange", "banana"])
>>> g2 = Grouping("fruit", ["pear", "apple", "orange", "banana"])
>>> g1 == g2
True

	
__ne__()

	Determine value inequality with another grouping.

	Parameters:	rhs – The object on the right-hand-side of the comparison must
support a property called ‘key’ and be iterable.

	Returns:	True if the keys or sequences are not equal, otherwise False.

Example

To test whether two Groupings are inequal in value:

>>> g1 = Grouping("fruit", ["pear", "apple", "orange", "banana"])
>>> g2 = Grouping("fruit", ["cherry", "apple", "orange", "banana"])
>>> g1 != g2
True

	
__repr__()

	Example

To create a string representation of the Grouping:

>>> g = Grouping("fruit", ["pear", "apple", "orange", "banana"])
>>> repr(g)
Grouping(key="fruit", items=["pear", "apple", "orange", "banana"])

	
to_dictionary(key_selector=None, value_selector=None)

	Build a dictionary from the source sequence.

	Parameters:	
	key_selector – A unary callable to extract a key from each item or None.
If None, the default key selector produces a single dictionary key, which
if the key of this Grouping.

	value_selector – A unary callable to extract a value from each item.
If None, the default value selector produces a list, which contains all
elements from this Grouping.

Note

This method uses immediate execution.

	Raises:	
	ValueError - If the Queryable is closed.

	TypeError - If key_selector is not callable.

	TypeError - If value_selector is not callable.

Examples

Convert a Grouping to a dict using the default selectors:

>>> g = Grouping("fruit", ["pear", "apple", "orange", "banana"])
>>> g.to_dictionary()
{'fruit': ['pear', 'apple', 'orange', 'banana']}

Providing a key_selector and to generate the dictionary keys from the
length of each element in the Grouping:

>>> g.to_dictionary(key_selector=len, value_selector=identity)
{4: 'pear', 5: 'apple', 6: 'banana'}

Notice that first six-letter word ‘orange’ is overwritten by the second
six-letter word, ‘banana’.

Since the key of the Grouping is not availble via the items in the
collection, if you need to incorporate the key into the produced dict
it must be incorporated into the selectors:

>>> g.to_dictionary(
... key_selector=lambda item: '{} letter {}'.format(len(item), g.key),
... value_selector=str.capitalize)
...
{'5 letter fruit': 'Apple', '6 letter fruit': 'Banana', '4 letter fruit': 'Pear'}

asq.selectors

Selector functions and selector function factories.

Selectors are so-called because they are used to select a value from an
element. The selected value is often an attribute or sub-element but could
be any computed value. The selectors module provides to standard
selectors and also some selector factories.

Selectors

	identity
	The identity function.

	
asq.selectors.identity(x)

	The identity function.

The identity function returns its only argument.

	Parameters:	x – A value that will be returned.

	Returns:	The argument x.

Examples

Use the the identity function with the where() query operator, which
has the effect that only elements which evaluate to True are present in
the result:

>>> from selectors import identity
>>> a = [5, 3, 0, 1, 0, 4, 2, 0, 3]
>>> query(a).where(identity).to_list()
[5, 3, 1, 4, 2, 3]

Selector factories

	a_
	alias of attrgetter

	k_
	alias of itemgetter

	m_
	alias of methodcaller

	
asq.selectors.a_(name)

	attrgetter(attr, ...) –> attrgetter object

Return a callable object that fetches the given attribute(s) from its operand.
After f = attrgetter(‘name’), the call f(r) returns r.name.
After g = attrgetter(‘name’, ‘date’), the call g(r) returns (r.name, r.date).
After h = attrgetter(‘name.first’, ‘name.last’), the call h(r) returns
(r.name.first, r.name.last).

Longhand equivalent

The selector factory call:

a_(name)

is equivalent to the longhand:

lambda element: element.name

Example

From a list of spaceship characteristics order the spaceships by length
and select the spaceship name:

>>> from asq.selectors import a_
>>> class SpaceShip(object):
... def __init__(self, name, length, crew):
... self.name = name
... self.length = length
... self.crew = crew
...
>>> spaceships = [SpaceShip("Nebulon-B", 300, 854),
... SpaceShip("V-19 Torrent", 6, 1),
... SpaceShip("Venator", 1137, 7400),
... SpaceShip("Lambda-class T-4a shuttle", 20, 6),
... SpaceShip("GR-45 medium transport", 90, 6)]
>>> query(spaceships).order_by(a_('length')).select(a_('name')).to_list()
['V-19 Torrent', 'Lambda-class T-4a shuttle', 'GR-45 medium transport',
 'Nebulon-B', 'Venator']

or sort the

	
asq.selectors.k_(key)

	itemgetter(item, ...) –> itemgetter object

Return a callable object that fetches the given item(s) from its operand.
After f = itemgetter(2), the call f(r) returns r[2].
After g = itemgetter(2, 5, 3), the call g(r) returns (r[2], r[5], r[3])

Longhand equivalent

The selector factory call:

k_(key)

is equivalent to the longhand:

lambda element: element[name]

Example

From a list of dictionaries containing planetary data, sort the planets by
increasing mass and select their distance from the sun:

>>> from asq.selectors import k_
>>> planets = [dict(name='Mercury', mass=0.055, period=88),
... dict(name='Venus', mass=0.815, period=224.7),
... dict(name='Earth', mass=1.0, period=365.3),
... dict(name='Mars', mass=0.532, period=555.3),
... dict(name='Jupiter', mass=317.8, period=4332),
... dict(name='Saturn', mass=95.2, period=10761),
... dict(name='Uranus', mass=14.6, period=30721),
... dict(name='Neptune', mass=17.2, period=60201)]
>>> query(planets).order_by(k_('mass')).select(k_('period')).to_list()
[88, 555.3, 224.7, 365.3, 30721, 60201, 10761, 4332]

	
asq.selectors.m_(name, *args, **kwargs)

	methodcaller(name, ...) –> methodcaller object

Return a callable object that calls the given method on its operand.
After f = methodcaller(‘name’), the call f(r) returns r.name().
After g = methodcaller(‘name’, ‘date’, foo=1), the call g(r) returns
r.name(‘date’, foo=1).

Longhand equivalent

The selector factory call:

m_(name, *args, **kwargs)

is equivalent to the longhand:

lambda element: getattr(element, name)(*args, **kwargs)

Example

From a list of SwimmingPool objects compute a list of swimming pool
areas by selecting the area() method on each pool:

>>> class SwimmingPool(object):
... def __init__(self, length, width):
... self.length = length
... self.width = width
... def area(self):
... return self.width * self.length
... def volume(self, depth):
... return self.area() * depth
...
>>> pools = [SwimmingPool(50, 25),
... SwimmingPool(25, 12.5),
... SwimmingPool(100, 25),
... SwimmingPool(10, 10)]
>>> query(pools).select(m_('area')).to_list()
[1250, 312.5, 2500, 100]

Compute volumes of the above pools for a water depth of 2 metres by
passing the depth as a positional argument to the m_() selector
factory:

>>> query(pools).select(m_('volume', 2)).to_list()
[2500, 625.0, 5000, 200]

Alternatively, we can use a named parameter to make the code clearer:

>>> query(pools).select(m_('volume', depth=1.5)).to_list()
[1875.0, 468.75, 3750.0, 150.0]

asq.predicates

Predicate function factories

Predicates are boolean functions which return True or False.

Predicate factories

The predicate factories partially apply the binary comparison operators by
providing the right-hand-side argument. The result is a unary function the
single argument to which is the left-hand-side of the comparison operator.

For example. the lt_(rhs) predicate factory returns:

lambda lhs: lhs < rhs

where rhs is provided when the predicate is created but lhs takes the
value passed to the unary predicate.

	contains_
	Create a unary predicate which tests for membership if its argument.

	eq_
	Create a predicate which tests its argument for equality with a value.

	is_
	Create a predicate which performs an identity comparison of its argument with a value.

	ge_
	Create a predicate which performs a greater-than-or-equal comparison of its argument with a value.

	gt_
	Create a predicate which performs a greater-than comparison of its argument with a value.

	le_
	Create a predicate which performs a less-than-or-equal comparison of its argument with a value.

	lt_
	Create a predicate which performs a less-than comparison of its argument with a value.

	ne_
	Create a predicate which tests its argument for inequality with a value.

	
asq.predicates.contains_(lhs)

	Create a unary predicate which tests for membership if its argument.

	Parameters:	lhs – (left-hand-side) The value to test for membership for in the
predicate argument.

	Returns:	A unary predicate function which determines whether its single
arguments (lhs) contains lhs.

Example

Filter for specific words containing ‘ei’:

>>> words = ['banana', 'receive', 'believe', 'ticket', 'deceive']
>>> query(words).where(contains_('ei')).to_list()
['receive', 'deceive']

	
asq.predicates.eq_(rhs)

	Create a predicate which tests its argument for equality with a value.

	Parameters:	rhs – (right-hand-side) The value with which the left-hand-side element
will be compared for equality.

	Returns:	A unary predicate function which compares its single argument (lhs)
for equality with rhs.

Example

Filter for those numbers equal to five:

>>> numbers = [5, 9, 12, 5, 89, 34, 2, 67, 43]
>>> query(numbers).where(eq_(5)).to_list()
[5, 5]

	
asq.predicates.is_(rhs)

	Create a predicate which performs an identity comparison of its
argument with a value.

	Parameters:	rhs – (right-hand-side) The value against which the identity test will
be performed.

	Returns:	A unary predicate function which determines whether its single
arguments (lhs) has the same identity - that is, is the same object -
as rhs.

Example

Filter for a specific object by identity:

>>> sentinel = object()
>>> sentinel
<object object at 0x0000000002ED8040>
>>> objects = ["Dinosaur", 5, sentinel, 89.3]
>>> query(objects).where(is_(sentinel)).to_list()
[<object object at 0x0000000002ED8040>]
>>>

	
asq.predicates.ge_(rhs)

	Create a predicate which performs a greater-than-or-equal comparison of
its argument with a value.

	Parameters:	rhs – (right-hand-side) The value against which the greater-than-or-
equal test will be performed.

	Returns:	A unary predicate function which determines whether its single
argument (lhs) is greater-than rhs.

Example

Filter for those numbers greater-than-or-equal to 43:

>>> numbers = [5, 9, 12, 5, 89, 34, 2, 67, 43]
>>> query(numbers).where(ge_(43)).to_list()
[89, 67, 43]

	
asq.predicates.gt_(rhs)

	Create a predicate which performs a greater-than comparison of its
argument with a value.

	Parameters:	rhs – (right-hand-side) The value against which the greater-than test
will be performed.

	Returns:	A unary predicate function which determines whether its single
argument (lhs) is less-than-or-equal to rhs.

Example

Filter for those numbers greater-than 43:

>>> numbers = [5, 9, 12, 5, 89, 34, 2, 67, 43]
>>> query(numbers).where(gt_(43)).to_list()
[89, 67]

	
asq.predicates.le_(rhs)

	Create a predicate which performs a less-than-or-equal comparison of its
argument with a value.

	Parameters:	rhs – (right-hand-side) The value against which the less-than-or-equal
test will be performed.

	Returns:	A unary predicate function which determines whether its single
argument (lhs) is less-than-or-equal to rhs.

Example

Filter for those numbers less-than-or-equal to 43:

>>> numbers = [5, 9, 12, 5, 89, 34, 2, 67, 43]
>>> query(numbers).where(le_(43)).to_list()
[5, 9, 12, 5, 34, 2, 43]

	
asq.predicates.lt_(rhs)

	Create a predicate which performs a less-than comparison of its argument
with a value.

	Parameters:	rhs – (right-hand-side) The value against which the less-than test will
be performed.

	Returns:	A unary predicate function which determines whether its single
argument (lhs) is less-than rhs.

Example

Filter for those numbers less-than-or-equal to 43:

>>> numbers = [5, 9, 12, 5, 89, 34, 2, 67, 43]
>>> query(numbers).where(lt_(43)).to_list()
[5, 9, 12, 5, 34, 2]

	
asq.predicates.ne_(rhs)

	Create a predicate which tests its argument for inequality with a value.

	Parameters:	rhs – (right-hand-side) The value with which the left-hand-side element
will be compared for inequality.

	Returns:	A unary predicate function which compares its single argument (lhs)
for inequality with rhs.

Example

Filter for those numbers not equal to 5:

>>> numbers = [5, 9, 12, 5, 89, 34, 2, 67, 43]
>>> query(numbers).where(ne_(5)).to_list()
[9, 12, 89, 34, 2, 67, 43]

Predicate combinators

Predicate combinators allow the predicate factories to be modified and combined
in a concise way. For example, we can write:

or_(lt_(5), gt_(37))

which will produce a predicate equivalent to:

lambda lhs: lhs < 5 or lhs > 37

which can be applied to each element of a sequence to test whether the element
is outside the range 5 to 37.

	and_
	A predicate combinator which produces the a new predicate which is the logical conjunction of two existing unary predicates.

	not_
	A predicate combinator which negates produces an inverted predicate.

	or_
	A predicate combinator which produces the a new predicate which is the logical disjunction of two existing unary predicates.

	xor_
	A predicate combinator which produces the a new predicate which is the logical exclusive disjunction of two existing unary predicates.

	
asq.predicates.and_(predicate1, predicate2)

	A predicate combinator which produces the a new predicate which is the
logical conjunction of two existing unary predicates.

The predicate returned by this combinator returns True when both of the two
supplied predicates return True, otherwise it returns False.

	Parameters:	
	predicate1 – A unary predicate function.

	predicate2 – A unary predicate function.

	Returns:	A unary predicate function which is the logical conjunction of
predicate1 and predicate2.

..rubric:: Example

Filter a list for all the words which both start with ‘a’ and end ‘t’:

>>> words = ['alphabet', 'train', 'apple', 'aghast', 'tent', 'alarm']
>>> query(words).where(and_(m_('startswith', 'a'), m_('endswith', 't'))).to_list()
['alphabet', 'aghast']

	
asq.predicates.not_(predicate)

	A predicate combinator which negates produces an inverted predicate.

The predicate returned by this combinator is the logical inverse of the
supplied combinator.

	Parameters:	predicate – A unary predicate function to be inverted.

	Returns:	A unary predicate function which is the logical inverse of pred.

Example

Filter a list for all the word which do not contain a specific sentinel
object:

>>> sentinel = object()
>>> objects = ["Dinosaur", 5, sentinel, 89.3]
>>> query(objects).where(not_(is_(sentinel))).to_list()
['Dinosaur', 5, 89.3]

	
asq.predicates.or_(predicate1, predicate2)

	A predicate combinator which produces the a new predicate which is the
logical disjunction of two existing unary predicates.

The predicate returned by this combinator returns True when either or both
of the two supplied predicates return True, otherwise it returns False.

	Parameters:	
	predicate1 – A unary predicate function.

	predicate2 – A unary predicate function.

	Returns:	A unary predicate function which is the logical disjunction of
predicate1 and predicate2.

Example

Filter a list for all words which either start with ‘a’ or end with ‘t’:

>>> words = ['alphabet', 'train', 'apple', 'aghast', 'tent', 'alarm']
>>> query(words).where(or_(m_('startswith', 'a'), m_('endswith', 't'))).to_list()
['alphabet', 'apple', 'aghast', 'tent', 'alarm']

	
asq.predicates.xor_(predicate1, predicate2)

	A predicate combinator which produces the a new predicate which is the
logical exclusive disjunction of two existing unary predicates.

The predicate returned by this combinator returns True when the two
supplied predicates return the different values, otherwise it returns
False.

	Parameters:	
	predicate1 – A unary predicate function.

	predicate2 – A unary predicate function.

	Returns:	A unary predicate function which is the logical exclusive disjunction
of predicate1 and predicate2.

Example

Filter a list for all words which either start with ‘a’ or end with ‘t’
but not both:

>>> words = ['alphabet', 'train', 'apple', 'aghast', 'tent', 'alarm']
>>> query(words).where(xor_(m_('startswith', 'a'), m_('endswith', 't'))).to_list()
['apple', 'tent', 'alarm']

asq.record

Records provide a convenient anonymous class which can be useful for
managing intermediate query results. new() provides a concise way to
create Records in the middle of a query.

asq.record.Record

	
class asq.record.Record(**kwargs)

	A class to which any attribute can be added at construction.

	
__init__(**kwargs)

	Initialise a Record with an attribute for each keyword argument.

The attributes of a Record are mutable and may be read from and written
to using regular Python instance attribute syntax.

	Parameters:	**kwargs – Each keyword argument will be used to initialise an
attribute with the same name as the argument and the given
value.

	
__repr__()

	A valid Python expression string representation of the Record.

	
__str__()

	A string representation of the Record.

asq.record.new

	
asq.record.new(**kwargs)

	A convenience factory for creating Records.

	Parameters:	**kwargs – Each keyword argument will be used to initialise an
attribute with the same name as the argument and the given
value.

	Returns:	A Record which has a named attribute for each of the keyword arguments.

Example

Create an employee and the get and set attributes:

>>> employee = new(age=34, sex='M', name='Joe Bloggs', scores=[3, 2, 9, 8])
>>> employee
Record(age=34, scores=[3, 2, 9, 8], name='Joe Bloggs', sex='M')
>>> employee.age
34
>>> employee.name
'Joe Bloggs'
>>> employee.age = 35
>>> employee.age
35

asq.namedelements

This module contains the definition of the IndexedElement type.

IndexedElements and KeyedElement are namedtuples useful for storing
index, element pairs. They are used as the default selectors by the
select_with_index() and select_many_with_index(), select_with_correspondence()
and select_many_with_corresponding() query methods.

asq.namedelements.IndexedElement

	
class asq.namedelements.IndexedElement(index, value)

	The index and value of the element can be accessed via the index and value
attributes.

	
static __new__(index, value)

	Create new instance of IndexedElement(index, value)

	
__repr__()

	Return a nicely formatted representation string

	
__str__()

	x.__str__() <==> str(x)

asq.namedelements.KeyedElement

	
class asq.namedelements.KeyedElement(key, value)

	The key and associated value can be accessed via the key and value
attributes.

	
static __new__(key, value)

	Create new instance of KeyedElement(key, value)

	
__repr__()

	Return a nicely formatted representation string

	
__str__()

	x.__str__() <==> str(x)

asq.extension

Adding extension operators.

The extension modules contains tools for registering new extension
operators with asq. This is achieved by dynamically adding new methods to
Queryable and possibly its subclasses.

	add_method
	Add an existing function to a class as a method.

	extend
	A function decorator for extending an existing class.

	
asq.extension.add_method(function, klass, name=None)

	Add an existing function to a class as a method.

Note

Consider using the extend decorator as a more readable alternative
to using this function directly.

	Parameters:	
	function – The function to be added to the class klass.

	klass – The class to which the new method will be added.

	name – An optional name for the new method. If omitted or None the
original name of the function is used.

	Returns:	The function argument unmodified.

	Raises:	
	ValueError - If klass already has an attribute with the same name as the

	extension method.

Example

Define a function called every_second() which returns every second
element from the source and add it to Queryable as a new query
operator called alternate():

>>> def every_second(self):
... def generate():
... for index, item in enumerate(self):
... if index % 2 == 0:
... yield item
... return self._create(generate())
...
>>> from asq.extension import add_method
>>> from asq.queryables import Queryable
>>>
>>> add_method(every_second, Queryable, "alternate")
<function every_second at 0x0000000002D2D5C8>
>>> a = [5, 8, 3, 2, 0, 9, 5, 4, 9, 2, 7, 0]
>>> query(a).alternate().to_list()
[5, 3, 0, 5, 9, 7]

	
asq.extension.extend(klass, name=None)

	A function decorator for extending an existing class.

Use as a decorator for functions to add to an existing class.

	Parameters:	
	klass – The class to be decorated.

	name – The name the new method is to be given in the klass class.

	Returns:	A decorator function which accepts a single function as its only
argument. The decorated function will be added to class klass.

	Raises:	
	ValueError - If klass already has an attribute with the same name as the

	extension method.

Example

Define a new query method called pairs() which iterates over
successive pairs in the source iterable, add it to the Queryable
class and use it to execute a query. Note that extension methods
defined in this way will typically need to call internal methods of
Queryable, such as the _create() method used here to construct a
new Queryable:

>>> from asq.extension import extend
>>> from asq.queryables import Queryable
>>>
>>> @extend(Queryable)
... def pairs(self):
... def generate_pairs():
... i = iter(self)
... sentinel = object()
... prev = next(i, sentinel)
... if prev is sentinel:
... return
... for item in i:
... yield prev, item
... prev = item
... return self._create(generate_pairs())
...
>>> from asq import query
>>> a = [5, 4, 7, 2, 8, 9, 1, 0, 4]
>>> query(a).pairs().to_list()
[(5, 4), (4, 7), (7, 2), (2, 8), (8, 9), (9, 1), (1, 0), (0, 4)]

Differences from LINQ

Although asq is inspired by LINQ, there are inevitably some differences
with Microsoft’s LINQ on .NET in order to accommodate the variance between C#
and Python.

Embedded Domain Specific Language

C# and VB.NET have specific syntax extensions to support the creation of LINQ
queries. This provides an alternative to the fluent interface (method
chaining). Any LINQ query can be expressed using the fluent interface. This is
not true for the LINQ domain specific languages embedded in C# and VB.NET but
they provide syntactic sugar for many common queries structures.

For example the following LINQ comprehension expression in C#:

from item in collection where item.id == 3 select item

is equivalent to the following call without syntactic sugar in C#:

collection.Where(item => item.id == 3)

No language extensions are provided by asq; however, the fluent
interface is fully supported.

let bindings

LINQ query syntax includes a let keyword which has no direct equivalent in
the LINQ fluent (method chaining) interface. The let keyword introduces a
new identifier which can store intermediate query results for improvements in
readability or performance.

All queries in LINQ syntax are translated by the C# compiler into chained
method calls. The let keyword is translated into a select() mapping
which creates instances of anonymous types which bundle together the current
query value together with any addition values bound by let so they may all
be passed down the method chain. Selectors and predicates in the method chain
following the select() are modified to extract the correct members from the
anonymous type.

For example, the following LINQ query expression:

var names = new string[] { "Dog", "Cat", "Giraffe", "Monkey", "Tortoise" };
var result =
 from animalName in names
 let nameLength = animalName.Length
 where nameLength > 3
 orderby nameLength
 select animalName;

is equivalent to the C# method chain:

var result = names
 .Select(animalName => new { nameLength = animalName.Length, animalName})
 .Where(x=>x.nameLength > 3)
 .OrderBy(x=>x.nameLength)
 .Select(x=>x.animalName);

The latter form can be emulated in asq using a Record object which can
be concisely created by the new() factory function:

from asq.initiators import asq
from asq.record import new

names = ['Dog', 'Cat', 'Giraffe', 'Monkey', 'Tortoise']
result = query(names)
 .select(lambda animal_name: new(name_length=len(animal_name),
 animal_name=animal_name))
 .where(lambda x: x.name_length > 3)
 .order_by(lambda x: x.name_length)
 .select(lambda x: x.animal_name)

Extension methods

C# supports extension methods which allow LINQ to “add” methods to existing
types such as IEnumerable. This is how the LINQ query operators are added
to enumerable types. Python has no fully equivalent technique because so-
called monkey patching, whereby new methods can be added to existing classes,
cannot be applied to built-in types such as list because they are immutable by
design.

For this reason query initiators such query() must be used to convert a
Python iterable into a type which supports query operators.

Nonetheless, the core operators included in asq may be supplemented with
additional operators by adding new methods to the appropriate queryable type,
usually Queryable itself.

A decorator called @extend is provided by asq for this purpose.

Overloading

Being statically typed C# supports method overloading and this is used
extensively by LINQ. For example, the SelectMany() method has the following
four overloads:

SelectMany<TSource, TResult>(IEnumerable<TSource>,
 Func<TSource, IEnumerable<TResult>>)

SelectMany<TSource, TResult>(IEnumerable<TSource>,
 Func<TSource, Int32, IEnumerable<TResult>>)

SelectMany<TSource, TCollection, TResult>(IEnumerable<TSource>,
 Func<TSource, IEnumerable<TCollection>>,
 Func<TSource, TCollection, TResult>)

SelectMany<TSource, TCollection, TResult>(IEnumerable<TSource>,
 Func<TSource, Int32, IEnumerable<TCollection>>,
 Func<TSource, TCollection, TResult>)

These four overloads perform quite distinct, although related, operations. In
asq the equivalent of these overloads are methods with separate - and more
descriptive - names:

select_many(collection_selector, result_selector)

select_many_with_index(collection_selector, result_selector)

select_many_with_correspondence(collection_selector, result_selector)

Default arguments allow the Python select_many() method to perform the
equivalent function as the first and third C# overloads and
select_many_with_index() the second and fourth overloads. The third Python
method provides a simpler alternative to the second version in some scenarios.

Equality comparers

Many .NET containers and and LINQ operators allow the specification of
comparer objects, particularly IEqualityComparer. This is important in C#
because equality in C# using the equality operator is by reference rather than
value. The use of separate comparer types is not idiomatic in Python and in
general no attempt has been made to support the equivalent of LINQ operator
overloads which accept equality comparers.

Two asq operators which do accept equality comparison functions are
contains() and sequence_equal().

Style changes

All class and method names in asq are compatible with the PEP 8 style-
guide. This necessarily requires that they are different to the .NET methods,
so, for example, SelectMany() in .NET becomes select_many() in asq.

The LINQ IEnumerable extension methods which create new sequences rather than
operate on existing sequences have become module-scope free function
initiators in asq in the initiators sub-module.

Specific naming changes

Owing to clashes with existing Python types, some specific name changes have
been made. Other name changes have been made because overloads in LINQ have
become separate named methods in asq.

	LINQ
	asq

	IEnumerable
	query(iterable)

	range()
	integers()

	except()
	difference()

Selector and predicate factories

Lambdas in Python are relatively verbose compared to C# lambdas and have the
further restriction that they cannot span multiple lines. Selector and
predicate factories are provided to asq to generate common lambda forms.
These have some out-of-the-box equivalent in LINQ.

Execution engine

The LINQ implementation in .NET converts query expressions or method chains
into an abstract representation of the query in the form of expression trees.
This allows decoupling of query specification from the form of the which will
be queried. This allows queries to be applied to diverse data sources including
object sequences as represented by IEnumerable (LINQ-to-objects), database
(LINQ-to-SQL), XML (LINQ-to-XML) or indeed any other data source for which a
LINQ provider has been created.

At this stage in it`s development asq sets out to be a solid, Pythonic,
functional equivalent of LINQ-to-objects only. With only one data provider
there is not advantage to representing queries in some abstract intermediate
representation. An expression tree based implementation of asq may be
created in future.

Pythonic behaviour

Container creation

Included in asq are several additions to support idiomatic Python usage.
The first group are the to_*() methods where * is a placeholder for various
built-in types (list, set, dict, tuple) and asq provided
types (lookup).

Special methods

The following Python special methods are supported by the Queryable type
to support idiomatic Python usage.

	Special method
	Purpose
	Equivalent query operator

	__contains__
	Support for the in operator
	contains()

	__getitem__
	Support for indexing with []
	element_at()

	__reversed__
	Support for reversed() built-in
	reverse()

	__repr__
	Stringified representation
	

	__str__
	Stringified representation
	

So, for example, the expression:

5 in query(numbers).select(lambda: x * 2)

is equivalent to:

query(numbers).select(lambda: x * 2).contains(5)

Frequently Asked Questions

Where are map(), filter() and reduce()?

All three of these operators exist in asq with different spelling for
consistency with LINQ:

	Python Standard Libary
	asq

	map()
	select()

	filter()
	where()

	reduce()
	aggregate()

Where are fold(), foldl() and foldr()?

Folds in asq can be performed using aggregate(). Here are the
equivalents of some Haskell code using folds and the Python asq code using
aggregate():

	Haskell
	asq

	foldl f seed seq
	query(seq).aggregate(f, seed)

	foldr f seed seq
	query(seq).reverse().aggregate(f, seed)

Wouldn’t generators be a better name for what asq calls initiators?

Possibly, but it could be confused with other uses of the word ‘generator’ in
Python. In fact, asq‘s initiators might actually be generators but the
essential point is that they ‘initiate’ the fluent query interface of asq.

How do I pronounce asq?

See the answer to the next question.

Where does the name asq come from?

Well, “asq” is homophonic with “ask” which is in turn synonymous with “query”.
Further more, “query” contains a “q” which rather neatly takes us back to the
“q” in “asq”. The inspiration for asq comes from “LINQ” where the “Q” also
stands for “query”. Finally, the glyph “q” is mirror symmetric with “p” and
replacing the “q” in “asq” with “p” gives “asp” which also rhymes with “asq”
but more importantly is synonymous with “snake”. “asq” is written in Python,
and pythons are a kind of snake, although the programming language is actually
named after a popular British comedy troupe and nothing to do with snakes at
all. Or something.

Changes

asq v.next

	Adds a convenience alias for asq.initiators.query as asq.query.

asq 1.3

There are several minor breaking API changes in this release. Please read
carefully more details:

	Re-assigns copyright from Robert Smallshire to Sixty North AS.

	Adds select_with_correspondence() query method.

	Renames the indexedelement module to namedelements.

	Renames the second element of IndexedElement from element to
value.

	Adds the KeyedElement namedtuple to the namedelements module.
KeyedElement has two elements called key and value.

	Queryable.to_dictionary() no longer raises an exception if the key_selector
produces duplicate keys. Instead, the values associated with later keys
overwrite those produced by earlier keys. This weakening of the
to_dictionary() constract allows us to maintain Liskov subsstitutability in
light of the specialised default key and value selectors for the overrides
of to_dictionary() provided for the Lookup and Grouping classes.
(See the next two changes for more details).

	Less surprising behaviour for Lookup.to_dictionary():
The default key and value selectors for Lookup.to_dictionary() are
overidden, so that the produced dictionary contains a single item for each
Grouping such that the key of each item is the key of the corresponding
Grouping and the value of the item is a list of the elements from the
Grouping.

	Less surprising behaviour for Grouping.to_dictionary():
The default key and value selectors for Grouping.to_dictionary() are
overidden, so that the produced dictionary contains a single item, such that
the key of the item is the key of the Grouping and the value of the item
is a list containing the elements from the Grouping.

asq 1.2.1

	Fixes a problem in setup.py that prevented installation on Python 2.

asq 1.2

	The default selector for select_with_index() now produces a new IndexedElement
object for each type which is a namedtuple. As IndexedElement is a tuple this
change is backwards compatibile, but now the more readable item.index and
item.element attributes can be used instead of accessing via indexes zero and
one.

asq 1.1

	The selector factories k_(), a_() and m_() have much faster implementations
because they are now simply aliases for itemgetter, attrgetter and
methodcaller from the Python standard library operator module. As a
result, even though they remain backwards API compatible with those in
asq 1.0 their capabilities are also extended somewhat:

	k_ can optionally accept more than one argument (key) and if so, the
selector it produces will return a tuple of multiple looked-up values
rather than a single value.

	a_ can optionally accept more than one argument (key) and if so, the
selector it produces will return a tuple of multiple looked-up values
rather than a single value. Furthermore, the attribute names supplied
in each argument can now contain dots to refer to nested attributes.

	Added asq.selectors.make_selector which will create a selector directly
from a string or integer using attribute or item lookup respectively.

asq 1.0

Huge correctness and completeness changes for 1.0 since 0.9. The API now has
feature equivalence with LINQ for objects with 100% test coverage and complete
documentation.

The API has been very much reorganised with some renaming of crucial functions.
The important asq() function is now called query() to prevent a clash with the
package name itself and is found in the asq.initiators package.

For common asq usage you now need to do:

from asq.initiators import query
a = [1, 2, 3]
query(a).select(lambda x: x*x).to_list()

to get started. For more than that, consult the documentation.

Samples

Mandelbrot

Visualising the Mandelbrot fractal with asq. This is a direct translation
of Jon Skeet’s original LINQ Mandelbrot [http://msmvps.com/blogs/jon_skeet/archive/2008/02/26/visualising-the-mandelbrot-set-with-linq-yet-again.aspx]
from LINQ in C# to asq in Python. The sample requires the Python Imaging
Library [http://www.pythonware.com/products/pil/] and so at the time of
writing only works with Python 2.

This example can be found in the source distribution of asq under
asq/examples/mandelbrot.py.

'''A conversion of Jon Skeet's LINQ Mandelbrot from LINQ to asq.

The original can be found at

http://msmvps.com/blogs/jon_skeet/archive/2008/02/26/visualising-the-mandelbrot-set-with-linq-yet-again.aspx

'''
import colorsys
#import Image

from asq.initiators import integers, query

def generate(start, func):
 value = start
 while True:
 yield value
 value = func(value)

def colnorm(r, g, b):
 return (int(255 * r) - 1, int(255 * g) - 1, int(255 * b) - 1)

def col(n, max):
 if n == max:
 return (0, 0, 0)
 return colnorm(colorsys.hsv_to_rgb(0.0, 1.0, float(n) / max))

def mandelbrot():
 MaxIterations = 200
 SampleWidth = 3.2
 SampleHeight = 2.5
 OffsetX = -2.1
 OffsetY = -1.25

 ImageWidth = 480
 ImageHeight = int(SampleHeight * ImageWidth / SampleWidth)

 query = integers(0, ImageHeight).select(lambda y: (y * SampleHeight) / ImageHeight + OffsetY) \
 .select_many_with_correspondence(
 lambda y: integers(0, ImageWidth).select(lambda x: (x * SampleWidth) / ImageWidth + OffsetX),
 lambda y, x: (x, y)) \
 .select(lambda real_imag: complex(*real_imag)) \
 .select(lambda c: query(generate(c, lambda x: x * x + c))
 .take_while(lambda x: x.real ** 2 + x.imag ** 2 < 4)
 .take(MaxIterations)
 .count()) \
 .select(lambda c: ((c * 7) % 255, (c * 5) % 255, (c * 11) % 255) if c != MaxIterations else (0, 0, 0))

 data = q.to_list()

 image = Image.new("RGB", (ImageWidth, ImageHeight))
 image.putdata(data)
 image.show()

if __name__ == '__main__':
 mandelbrot()

This example can be be run with:

python -m asq.examples.mandelbrot

which produces

[image: _images/mandelbrot.png]

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 asq	

 	
 	
 asq.extension	

 	
 	
 asq.initiators	

 	
 	
 asq.namedelements	

 	
 	
 asq.predicates	

 	
 	
 asq.queryables	

 	
 	
 asq.record	

 	
 	
 asq.selectors	

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | Q
 | R
 | S
 | T
 | U
 | W
 | X
 | Z

_

 	
 	__contains__() (asq.queryables.Lookup method)

 	(asq.queryables.Queryable method)

 	__enter__() (asq.queryables.Queryable method)

 	__eq__() (asq.queryables.Grouping method)

 	(asq.queryables.Queryable method)

 	__exit__() (asq.queryables.Queryable method)

 	__getitem__() (asq.queryables.Lookup method)

 	(asq.queryables.Queryable method)

 	__init__() (asq.queryables.Grouping method)

 	(asq.queryables.Lookup method)

 	(asq.queryables.Queryable method)

 	(asq.record.Record method)

 	__iter__() (asq.queryables.Queryable method)

 	__len__() (asq.queryables.Grouping method)

 	(asq.queryables.Lookup method)

 	
 	__ne__() (asq.queryables.Grouping method)

 	(asq.queryables.Queryable method)

 	__new__() (asq.namedelements.IndexedElement static method)

 	(asq.namedelements.KeyedElement static method)

 	__repr__() (asq.namedelements.IndexedElement method)

 	(asq.namedelements.KeyedElement method)

 	(asq.queryables.Grouping method)

 	(asq.queryables.Lookup method)

 	(asq.queryables.Queryable method)

 	(asq.record.Record method)

 	__reversed__() (asq.queryables.Queryable method)

 	__str__() (asq.namedelements.IndexedElement method)

 	(asq.namedelements.KeyedElement method)

 	(asq.queryables.Queryable method)

 	(asq.record.Record method)

A

 	
 	a_() (in module asq.selectors)

 	add_method() (in module asq.extension)

 	aggregate() (asq.queryables.Queryable method)

 	all() (asq.queryables.Queryable method)

 	and_() (in module asq.predicates)

 	any() (asq.queryables.Queryable method)

 	apply_result_selector() (asq.queryables.Lookup method)

 	as_parallel() (asq.queryables.Queryable method)

 	
 	asq.extension (module)

 	asq.initiators (module)

 	asq.namedelements (module)

 	asq.predicates (module)

 	asq.queryables (module)

 	asq.record (module)

 	asq.selectors (module)

 	average() (asq.queryables.Queryable method)

C

 	
 	close() (asq.queryables.Queryable method)

 	closed() (asq.queryables.Queryable method)

 	concat() (asq.queryables.Queryable method)

 	
 	contains() (asq.queryables.Queryable method)

 	contains_() (in module asq.predicates)

 	count() (asq.queryables.Queryable method)

D

 	
 	default_if_empty() (asq.queryables.Queryable method)

 	
 	difference() (asq.queryables.Queryable method)

 	distinct() (asq.queryables.Queryable method)

E

 	
 	element_at() (asq.queryables.Queryable method)

 	empty() (in module asq.initiators)

 	
 	eq_() (in module asq.predicates)

 	extend() (in module asq.extension)

F

 	
 	first() (asq.queryables.Queryable method)

 	
 	first_or_default() (asq.queryables.Queryable method)

G

 	
 	ge_() (in module asq.predicates)

 	group_by() (asq.queryables.Queryable method)

 	
 	group_join() (asq.queryables.Queryable method)

 	Grouping (class in asq.queryables)

 	gt_() (in module asq.predicates)

I

 	
 	identity() (in module asq.selectors)

 	IndexedElement (class in asq.namedelements)

 	
 	integers() (in module asq.initiators)

 	intersect() (asq.queryables.Queryable method)

 	is_() (in module asq.predicates)

J

 	
 	join() (asq.queryables.Queryable method)

K

 	
 	k_() (in module asq.selectors)

 	
 	key (asq.queryables.Grouping attribute)

 	KeyedElement (class in asq.namedelements)

L

 	
 	last() (asq.queryables.Queryable method)

 	last_or_default() (asq.queryables.Queryable method)

 	le_() (in module asq.predicates)

 	
 	log() (asq.queryables.Queryable method)

 	Lookup (class in asq.queryables)

 	lt_() (in module asq.predicates)

M

 	
 	m_() (in module asq.selectors)

 	
 	max() (asq.queryables.Queryable method)

 	min() (asq.queryables.Queryable method)

N

 	
 	ne_() (in module asq.predicates)

 	
 	new() (in module asq.record)

 	not_() (in module asq.predicates)

O

 	
 	of_type() (asq.queryables.Queryable method)

 	or_() (in module asq.predicates)

 	
 	order_by() (asq.queryables.Queryable method)

 	order_by_descending() (asq.queryables.Queryable method)

 	OrderedQueryable (class in asq.queryables)

Q

 	
 	query() (in module asq.initiators)

 	
 	Queryable (class in asq.queryables)

R

 	
 	Record (class in asq.record)

 	
 	repeat() (in module asq.initiators)

S

 	
 	select() (asq.queryables.Queryable method)

 	select_many() (asq.queryables.Queryable method)

 	select_many_with_correspondence() (asq.queryables.Queryable method)

 	select_many_with_index() (asq.queryables.Queryable method)

 	select_with_correspondence() (asq.queryables.Queryable method)

 	select_with_index() (asq.queryables.Queryable method)

 	
 	sequence_equal() (asq.queryables.Queryable method)

 	single() (asq.queryables.Queryable method)

 	single_or_default() (asq.queryables.Queryable method)

 	skip() (asq.queryables.Queryable method)

 	skip_while() (asq.queryables.Queryable method)

 	sum() (asq.queryables.Queryable method)

T

 	
 	take() (asq.queryables.Queryable method)

 	take_while() (asq.queryables.Queryable method)

 	to_dictionary() (asq.queryables.Grouping method)

 	(asq.queryables.Lookup method)

 	(asq.queryables.Queryable method)

 	
 	to_list() (asq.queryables.Queryable method)

 	to_lookup() (asq.queryables.Queryable method)

 	to_set() (asq.queryables.Queryable method)

 	to_str() (asq.queryables.Queryable method)

 	to_tuple() (asq.queryables.Queryable method)

U

 	
 	union() (asq.queryables.Queryable method)

W

 	
 	where() (asq.queryables.Queryable method)

X

 	
 	xor_() (in module asq.predicates)

Z

 	
 	zip() (asq.queryables.Queryable method)

 _static/minus.png

_static/comment-close.png

_static/up.png

_static/asq_logo_150.png
i

85

_static/file.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/plus.png

_static/comment-bright.png

_images/mandelbrot.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		asq

 		Copyright

 		Official Website

 		License

 		asq Introduction

 		Installing asq

 		Diving in

 		Initiators

 		When is the query evaluated?

 		Query chaining

 		Query nesting

 		Selectors

 		Lambdas

 		Functions

 		Unbound methods

 		Bound methods

 		Selector factories

 		Default selectors and the identity selector

 		Predicates

 		Lambdas

 		Functions

 		Unbound methods

 		Bound methods

 		Predicate factories

 		Predicate combinator factories

 		Using selector factories for predicates

 		Comparers

 		Records

 		Debugging

 		Extending asq

 		API Reference

 		asq

 		asq.initiators

 		asq.queryables

 		asq.selectors

 		asq.predicates

 		asq.record

 		asq.namedelements

 		asq.extension

 		Differences from LINQ

 		Embedded Domain Specific Language

 		let bindings

 		Extension methods

 		Overloading

 		Equality comparers

 		Style changes

 		Specific naming changes

 		Selector and predicate factories

 		Execution engine

 		Pythonic behaviour

 		Container creation

 		Special methods

 		Frequently Asked Questions

 		Where are map(), filter() and reduce()?

 		Where are fold(), foldl() and foldr()?

 		Wouldn't generators be a better name for what asq calls initiators?

 		How do I pronounce asq?

 		Where does the name asq come from?

 		Changes

 		asq v.next

 		asq 1.3

 		asq 1.2.1

 		asq 1.2

 		asq 1.1

 		asq 1.0

 		Samples

 		Mandelbrot

_static/down.png

_static/comment.png

